Breast cancer is the most commonly diagnosed cancer and the second leading cause of cancer-related death in women, accounting for approximately 30% of all new cancer cases. The prognosis of breast cancer heavily depends on the stage of diagnosis, with early detection resulting in higher survival rates. Various risk factors, including family history, alcohol consumption and hormone exposure, contribute to breast cancer development. Triple-negative breast cancer (TNBC), characterized by the absence of certain receptors, is particularly aggressive and heterogeneous. Cerebral cavernous malformations (CCMs), abnormal dilations of small blood vessels in the brain, is contributed by mutated genes like , , and through the perturbed formation of the CCM signaling complex (CSC). The CSC-non-classic membrane progesterone receptors (mPRs)-progesterone (PRG) (CmP)/CSC-mPRs-PRG-classic nuclear progesterone receptors (nPRs) (CmPn) signaling network, which integrates the CSC with mPRs and nPRs, plays a role in breast cancer tumorigenesis. Understanding these pathways can provide insights into potential treatments. This paper focuses on the emerging field of CmPn/CmP signal networks, which involve PRG, its receptors (nPRs and mPRs), and the CSC. These networks play a role in tumorigenesis, particularly in TNBCs. Aims to deliver a thorough examination of the CmP/CmPn pathways concerning TNBCs, this paper provides a comprehensive overview of these pathways, explores their applications and highlights their significance in the context of TNBCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11093088 | PMC |
http://dx.doi.org/10.21037/tbcr-23-30 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!