Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Deciphering hand motion intention from surface electromyography (sEMG) encounters challenges posed by the requisites of multiple degrees of freedom (DOFs) and adaptability. Unlike discrete action classification grounded in pattern recognition, the pursuit of continuous kinematics estimation is appreciated for its inherent naturalness and intuitiveness. However, prevailing estimation techniques contend with accuracy limitations and substantial computational demands. Kalman estimation technology, celebrated for its ease of implementation and real-time adaptability, finds extensive application across diverse domains. This study introduces a continuous Kalman estimation method, leveraging a system model with sEMG and joint angles as inputs and outputs. Facilitated by model parameter training methods, the approach deduces multiple DOF finger kinematics simultaneously. The method's efficacy is validated using a publicly accessible database, yielding a correlation coefficient (CC) of 0.73. With over 45,000 windows for training Kalman model parameters, the average computation time remains under 0.01 s. This pilot study amplifies its potential for further exploration and application within the realm of continuous finger motion estimation technology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11093877 | PMC |
http://dx.doi.org/10.34133/cbsystems.0094 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!