AI Article Synopsis

Article Abstract

Drug repurposing is a strategic endeavor that entails the identification of novel therapeutic applications for pharmaceuticals that are already available in the market. Despite the advantageous nature of implementing this particular strategy owing to its cost-effectiveness and efficiency in reducing the time required for the drug discovery process, it is essential to bear in mind that there are various factors that must be meticulously considered and taken into account. Up to this point, there has been a noticeable absence of comprehensive analyses that shed light on the limitations of repurposing drugs. The primary aim of this review is to conduct a thorough illustration of the various challenges that arise when contemplating drug repurposing from a clinical perspective in three major fields-cardiovascular, cancer, and diabetes-and to further underscore the potential risks associated with the emergence of antimicrobial resistance (AMR) when employing repurposed antibiotics for the treatment of noninfectious and infectious diseases. The process of developing repurposed medications necessitates the application of creativity and innovation in designing the development program, as the body of evidence may differ for each specific case. In order to effectively repurpose drugs, it is crucial to consider the clinical implications and potential drawbacks that may arise during this process. By comprehensively analyzing these challenges, we can attain a deeper comprehension of the intricacies involved in drug repurposing, which will ultimately lead to the development of more efficacious and safe therapeutic approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11094707PMC
http://dx.doi.org/10.33393/dti.2024.3019DOI Listing

Publication Analysis

Top Keywords

drug repurposing
16
repurposing clinical
8
antimicrobial resistance
8
three major
8
drug
5
repurposing
5
dark side
4
side drug
4
clinical trial
4
trial challenges
4

Similar Publications

Cancer is a complex disease with heterogeneous mutational and gene expression patterns. Subgroups of patients who share a phenotype might share a specific genetic architecture including protein-protein interactions (PPIs). We developed the Atlas of Protein-Protein Interactions in Cancer (APPIC), an interactive webtool that provides PPI subnetworks of 10 cancer types and their subtypes shared by cohorts of patients.

View Article and Find Full Text PDF

Scaled and Weighted Laplacian Matrices as Functional Descriptors for GPCR Ligands.

J Comput Chem

January 2025

Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán, CDMX, Mexico.

The G protein-coupled receptor (GPCR) pharmacology accounts for a significant field in research, clinical studies, and therapeutics. Computer-aided drug discovery is an evolving suite of techniques and methodologies that facilitate accelerated progress in drug discovery and repositioning. However, the structure-activity relationships of molecules targeting GPCRs are highly challenging in many cases since slight structural modifications can lead to drastic changes in biological functionality.

View Article and Find Full Text PDF

An update on selective estrogen receptor modulator: repurposing and formulations.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Pharmaceutics & Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, Gujarat, 384012, India.

The selective estrogen receptor modulator (SERM) raloxifene hydrochloride (RLH) is used extensively in the management and prevention of breast cancer and osteoporosis. Recent clinical studies show the repurposing of RLH in various diseases based on its structure and some clinical trials studies. Optimizing the clinical effectiveness of this important drug requires a thorough review of the formulation techniques, patent environment, and analytical procedures.

View Article and Find Full Text PDF

Background: Dilated Cardiomyopathy (DCM) is a debilitating cardiovascular disorder that challenges current therapeutic strategies. The exploration of novel drug repositioning opportunities through gene expression analysis offers a promising avenue for discovering effective treatments.

Objective: This study aims to identify potential drug repositioning opportunities and lead compounds for DCM treatment by optimizing gene expression characteristics using published data.

View Article and Find Full Text PDF

Emodepside: the anthelmintic's mode of action and toxicity.

Front Parasitol

December 2024

Department of Biomedical Science, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.

Nematode parasitic infections continue to be a major health problem for humans and animals. Drug resistance to currently available treatments only worsen the problem. Drug discovery is expensive and time-consuming, making drug repurposing an enticing option.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!