A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanism and potentialities of photothermal and photodynamic therapy of transition metal dichalcogenides (TMDCs) against cancer. | LitMetric

AI Article Synopsis

  • - The primary objective of nanoparticle-based phototherapy is to inhibit tumor growth using techniques like photothermal therapy (PTT) and photodynamic therapy (PDT), which employ near-infrared light to target and heat cancerous tissues.
  • - The introduction of transition materials dichalcogenides (TMDCs) marks a significant advancement in these therapies, as their unique structure allows them to effectively absorb NIR light and destroy deep-seated cancer cells.
  • - This review explores the mechanisms behind PDT/PTT, the role of TMDCs in cancer treatment, and the potential of combining these therapies with immunotherapy to enhance cancer cell destruction by activating immune responses, specifically through the involvement of CD8 cells.

Article Abstract

The ultimate goal of nanoparticle-based phototherapy is to suppress tumor growth. Photothermal therapy (PTT) and photothermal photodynamic therapy (PDT) are two types of physicochemical therapy that use light radiation with multiple wavelength ranges in the near-infrared to treat cancer. When a laser is pointed at tissue, photons are taken in the intercellular and intracellular regions, converting photon energy to heat. It has attracted much interest and research in recent years. The advent of transition materials dichalcogenides (TMDCs) is a revolutionary step in PDT/PTT-based cancer therapy. The TMDCs is a multilayer 2D nano-composite. TMDCs contain three atomic layers in which two chalcogens squash in the transition metal. The chalcogen atoms are highly reactive, and the surface characteristics of TMDCs help them to target deep cancer cells. They absorb Near Infrared (NIR), which kills deep cancer cells. In this review, we have discussed the history and mechanism of PDT/PTT and the use of TMDCs and nanoparticle-based systems, which have been practiced for theranostics purposes. We have also discussed PDT/PTT combined with immunotherapy, in which the cancer cell apoptosis is done by activating the immune cells, such as CD8.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bio.4770DOI Listing

Publication Analysis

Top Keywords

photothermal photodynamic
8
photodynamic therapy
8
transition metal
8
dichalcogenides tmdcs
8
deep cancer
8
cancer cells
8
tmdcs
6
cancer
6
therapy
5
mechanism potentialities
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: