Multiphoton lithography (MPL), an emerging truly 3D microfabrication technique, exhibits substantial potential in biomedical applications, including drug delivery and tissue engineering. Fabricated micro-objects are often expected to undergo shape morphing or bending of the entire structure or its parts. Furthermore, ensuring precise property tuning is detrimental to the realization of the functionality of MPL microstructures. Herein, novel MPL materials based on interpenetrating polymer networks (IPNs) are presented that effectively combine the advantages of acrylate and epoxy systems. IPNs with varying component ratios are investigated for their microfabrication performance and structural integrity with respect to thermal and micromechanical properties. A variety of high-resolution techniques is applied to comprehensively evaluate IPN properties at the bulk, micron, and segmental levels. This study shows that the MPL laser scanning velocity and power, photoinitiator content, and multi-step exposure can be used to tune the morphology and properties of the IPN. As a result, a library of 3D MPL IPN microstructures with high 3D structural stability and tailored thermal and micromechanical properties is achieved. New IPN microstructures with Young's moduli of 3-4 MPa demonstrate high-to-fully elastic responses to deformations, making them promising for applications in morphable microsystems, soft micro-robotics, and cell engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202310580 | DOI Listing |
Langmuir
January 2025
School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, P.R. China.
Thermal oxidation has a significant effect on the durability of bitumen composites reinforced with carbon nanomaterials. However, the mechanisms of aging resistance and the effect of aging on the chemical properties, morphology, micromechanical properties, and rheology of bitumen with carbon nanomaterials are still unclear. This study investigated the mechanisms of aging resistance underlying the synergistic effects of graphene and carbon nanotubes (CNTs) on the durability of bitumen composites.
View Article and Find Full Text PDFPLoS One
January 2025
College of Electric Power, Inner Mongolia University of Technology, Hohhot, China.
The modified nanoparticles can significantly improve the insulation characteristics of transformer oil. Currently, there is a lack of research on the actual motion state of particles in nanofluid to further understand the micro-mechanism of nanoparticles improving the insulation characteristics of transformer oil. In this study, the nanofluid containing 0.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry, Faculty of Science, Cadi Ayyad University, Marrakech 40000, Morocco.
Understanding the relationship between elastic, chemical, and thermal properties is essential for the prevention of the behavior of SiO flint aggregates during their application. In fact, the elastic properties of silica depend on chemical and heat treatment. In order to identify the crystallite sizes for natural SiO before and after chemical treatment samples, Williamson-Hall plots and Scherer's formulas are used.
View Article and Find Full Text PDFMacromol Rapid Commun
December 2024
School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA.
Examining the mechanical properties of polymer thin films is crucial for high-performance applications such as displays, coatings, sensors, and thermal management. It is important to design thin film microstructures that excel in high-demand situations without compromising mechanical integrity. Here, a polymer blend of polystyrene (PS) and polyisoprene (PI) is used as a model to explore microscale deformation behavior under uniaxial mechanical testing.
View Article and Find Full Text PDFMicrosyst Nanoeng
December 2024
ECE Department, University of Alberta, 9211-116 St. NW, Edmonton, T6G 1H9, AB, Canada.
Optomechanical sensors provide a platform for probing acoustic/vibrational properties at the micro-scale. Here, we used cavity optomechanical sensors to interrogate the acoustic environment of adjacent air bubbles in water. We report experimental observations of the volume acoustic modes of these bubbles, including both the fundamental Minnaert breathing mode and a family of higher-order modes extending into the megahertz frequency range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!