A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An orchestrated ethylene-gibberellin signaling cascade contributes to mesocotyl elongation and emergence of rice direct seeding. | LitMetric

A mechanized direct seeding of rice with less labor and water usage, has been widely adopted. However, this approach requires varieties that exhibit uniform seedling emergence. Mesocotyl elongation (ME) offers the main drive of fast emergence of rice seedlings from soils; nevertheless, its genetic basis remains unknown. Here, we identify a major rice quantitative trait locus Mesocotyl Elongation1 (qME1), an allele of the Green Revolution gene Semi-Dwarf1 (SD1), encoding GA20-oxidase for gibberellin (GA) biosynthesis. ME1 expression is strongly induced by soil depth and ethylene. When rice grains are direct-seeded in soils, the ethylene core signaling factor OsEIL1 directly promotes ME1 transcription, accelerating bioactive GA biosynthesis. The GAs further degrade the DELLA protein SLENDER RICE 1 (SLR1), alleviating its inhibition of rice PHYTOCHROME-INTERACTING FACTOR-LIKE13 (OsPIL13) to activate the downstream expansion gene OsEXPA4 and ultimately promote rice seedling ME and emergence. The ancient traits of long mesocotyl and strong emergence ability in wild rice and landrace were gradually lost in company with the Green Revolution dwarf breeding process, and an elite ME1-R allele (D349H) is found in some modern Geng varieties (long mesocotyl lengths) in northern China, which can be used in the direct seeding and dwarf breeding of Geng varieties. Furthermore, the ectopic and high expression of ME1 driven by mesocotyl-specific promoters resulted in rice plants that could be direct-seeded without obvious plant architecture or yield penalties. Collectively, we reveal the molecular mechanism of rice ME, and provide useful information for breeding new Green Revolution varieties with long mesocotyl suitable for direct-seeding practice.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jipb.13671DOI Listing

Publication Analysis

Top Keywords

direct seeding
12
green revolution
12
long mesocotyl
12
rice
11
mesocotyl elongation
8
emergence rice
8
seedling emergence
8
dwarf breeding
8
geng varieties
8
varieties long
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!