The deep removal of organic pollutants is challenging for coagulation technology in drinking water and wastewater treatment plants to satisfy the rising water standards. Iron (III) chloride (FeCl) is a popular inorganic coagulant; although it has good performance in removing the turbidity (TB) in water at an alkaline medium, it cannot remove dissolved pollutants and natural organic matter such as humic acid water solution. Additionally, its hygroscopic nature complicates determining the optimal dosage for effective coagulation. Biochar (BC), a popular adsorbent with abundant functional groups, porous structure, and relatively high surface area, can adsorb adsorbates from water matrices. Therefore, combining BC with FeCl presents a potential solution to address the challenges associated with iron chloride. Consequently, this study focused on preparing and characterizing a novel biochar/ferric chloride-based coagulant (BC-FeCl) for efficient removal of turbidity (TB) and natural organic matter, specifically humic acid (HA), from synthetic wastewater. The potential solution for the disposal of produced sludge was achieved by its recovering and recycling, then used in adsorption of HA from aqueous solution. The novel coagulant presented high TB and HA removal within 10 min of settling period at pH solution of 7.5. Furthermore, the recovered sludge presented a good performance in the adsorption of HA from aqueous solution. Adsorption isotherm and kinetics studies revealed that the Pseudo-second-order model best described kinetic adsorption, while the Freundlich model dominated the adsorption isotherm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2024.119134 | DOI Listing |
J Environ Sci Health A Tox Hazard Subst Environ Eng
January 2025
Crop Science Discipline, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
To meet wastewater treatment quality standards for reuse, integrating advanced oxidation processes (AOPs) with Decentralized Wastewater Treatment Systems (DEWATS) is promising. This study aimed to optimize AOPs (ozonolysis, UV photolysis, TiO photocatalysis) for polishing anaerobic filter (AF) effluent from DEWATS, as an alternative to constructed wetlands. Metrics included pathogen reduction efficiency, post-disinfection regrowth, and effects on physical parameters (pH, EC, turbidity), organic matter (soluble COD, BOD, DOC, humic), and nutrient concentration (ammonium, nitrates, ortho-P).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Biomedical Engineering, Istanbul AREL University, 34537 Istanbul, Turkey.
Three-dimensional (3D) printing is a rapidly evolving technology. This study focuses on developing biopolymeric inks tailored for Three-dimensional (3D) printing applications, specifically to produce 3D-printed materials for wound dressing. Humic Acid (HA) was incorporated into the ink formulations due to its anti-inflammatory properties.
View Article and Find Full Text PDFEnviron Pollut
January 2025
School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Postgraduate Program in Health Sciences (PPGCS), Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina, Brazil.
The progression of periodontal disease (PD) involves the action of oxidative stress mediators. Antioxidant agents may potentially attenuate the development of this condition. Thus, we aimed to evaluate the effects of different doses of humic acid (HA), extracted from biomass vermicomposting, on redox status and parameters related to PD progression in rats.
View Article and Find Full Text PDFEnviron Res
January 2025
Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.
Herein, a biochar-supported zero-valent iron (ZVI) nanosheet catalyst (Fe@BC) for the activation of persulfate to degrade ciprofloxacin (CIP) was prepared using industrial kraft lignin and Fenton sludge as carbon and iron sources, respectively. Fe@BC showed considerably better CIP degradation efficiency (96.9% at 20 mg·L) than traditional catalysts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!