Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Coffee plants contain well-known xanthines as caffeine. Three Coffea species grown in a controlled greenhouse environment were the focus of this research. Coffea arabica and C. canephora are two first principal commercial species and commonly known as arabica and robusta, respectively. Originating in Central Africa, C. anthonyi is a novel species with small leaves. The xanthine metabolites in flower, fruit and leaf extracts were compared using both targeted and untargeted metabolomics approaches. We evaluated how the xanthine derivatives and FQA isomers relate to the expression of biosynthetic genes encoding N- and O-methyltransferases. Theobromine built up in leaves of C. anthonyi because caffeine biosynthesis was hindered in the absence of synthase gene expression. Despite this, green fruits expressed these genes and they produced caffeine. Given that C. anthonyi evolved successfully over time, these findings put into question the defensive role of caffeine in leaves. An overview of the histolocalisation of xanthines in the different flower parts of Coffea arabica was also provided. The gynoecium contained more theobromine than the flower buds or petals. This could be attributed to increased caffeine biosynthesis before fructification. The presence of theophylline and the absence of theobromine in the petals indicate that caffeine is catabolized more in the petals than in the gynoecium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2024.112117 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!