Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Enterococcus faecalis is the primary species detected in cases of secondary persistent infection resulting from root canal therapy failure. Due to the overuse of antibacterial agents, E. faecalis has developed resistance to these drugs, making it challenging to treat clinical diseases caused by E. faecalis infection. Therefore, there is an urgent need to explore new alternative drugs for treating E. faecalis infections. We aimed to clone and express the genes of phage endolysins, purify the recombinant proteins, and analyze their antibacterial activity, lysis profile, and ability to remove biofilm. The crude enzyme of phage endolysin pEF51 (0.715 mg/mL), derived from phage PEf771 infecting E. faecalis, exhibited superior bacterial inhibitory activity and a broader bactericidal spectrum than its parental phage PEf771. Furthermore, pEF51 demonstrated high efficacy in eliminating E. faecalis biofilm. Therapeutic results of the infected Sprague-Dawley (SD) rat model indicated that among 10 SD rats, only one developed a thoracic peritoneal abscess and splenic peritoneal abscess after 72 h of treatment with pEF51. This suggests that pEF51 could provide protection against E. faecalis infection in SD rats. Based on the 16S rDNA metagenomic data of the intestinal microbial community of SD rats, endolysin pEF51 exerted a certain influence on the diversity of intestinal microorganisms at the genus level. Thus, pEF51 may serve as a promising alternative to antibiotics in the management of E. faecalis infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2024.106689 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!