A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Holed up, but thriving: Impact of multitrophic cryoconite communities on glacier elemental cycles. | LitMetric

Cryoconite holes (water and sediment-filled depressions), found on glacier surfaces worldwide, serve as reservoirs of microbes, carbon, trace elements, and nutrients, transferring these components downstream via glacier hydrological networks. Through targeted amplicon sequencing of carbon and nitrogen cycling genes, coupled with functional inference-based methods, we explore the functional diversity of these mini-ecosystems within Antarctica and the Himalayas. These regions showcase distinct environmental gradients and experience varying rates of environmental change influenced by global climatic shifts. Analysis revealed a diverse array of photosynthetic microorganisms, including Stramenopiles, Cyanobacteria, Rhizobiales, Burkholderiales, and photosynthetic purple sulfur Proteobacteria. Functional inference highlighted the high potential for carbohydrate, amino acid, and lipid metabolism in the Himalayan region, where organic carbon concentrations surpassed those in Antarctica by up to 2 orders of magnitude. Nitrogen cycling processes, including fixation, nitrification, and denitrification, are evident, with Antarctic cryoconite exhibiting a pronounced capacity for nitrogen fixation, potentially compensating for the limited nitrate concentrations in this region. Processes associated with the respiration of elemental sulfur and inorganic sulfur compounds such as sulfate, sulfite, thiosulfate, and sulfide suggest the presence of a complete sulfur cycle. The Himalayan region exhibits a higher potential for sulfur cycling, likely due to the abundant sulfate ions and sulfur-bearing minerals in this region. The capability for complete iron cycling through iron oxidation and reduction reactions was also predicted. Methanogenic archaea that produce methane during organic matter decomposition and methanotrophic bacteria that utilize methane as carbon and energy sources co-exist in the cryoconite, suggesting that these niches support the complete cycling of methane. Additionally, the presence of various microfauna suggests the existence of a complex food web. Collectively, these results indicate that cryoconite holes are self-sustaining ecosystems that drive elemental cycles on glaciers and potentially control carbon, nitrogen, sulfur, and iron exports downstream.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.173187DOI Listing

Publication Analysis

Top Keywords

elemental cycles
8
cryoconite holes
8
carbon nitrogen
8
nitrogen cycling
8
himalayan region
8
sulfur
6
cryoconite
5
carbon
5
cycling
5
holed thriving
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!