Fluorescence visualization of CO-responsive phase transfer materials targeting at the heterogeneous interfacial reactions in advanced oxidation of naphthenic acid in wastewater.

Sci Total Environ

School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, Hebei 050018, PR China. Electronic address:

Published: July 2024

Treatment of naphthenic acids (NAs) in wastewater is necessary due to its high toxicity and difficult degradation. In the heterogeneous Fenton-like advanced oxidation of organic pollutant system, the insufficient accessibility of oxidizing agent and NAs greatly hamper the reaction efficiency. CO-responsive phase transfer materials derived from polyethylene glycol (PEG)-based deep eutectic solvents were specific targeted at the immiscible-binary phase system. The NAs oxidative degradation process was optimized including the kinds of catalyst (Molecular weight of PEG, constitute of DESs, and dosage.), temperature, flow rate of CO, et al. With the help of fluorescence properties of catalyst, the hydrophilic-hydrophobic interaction was visual-monitored and further studied. The amphipathic property of PEG-200/Sodium persulfate/Polyether amine 230 (PEA230) greatly reduced the aqueous/organic phase transfer barrier between sodium persulfate and NAs (up to 84 %), thus accreting oxidation rate. The surface tension decreased from 35.364 mN/m to 28.595 mN/m. To control the reaction rate, the CO respond structure of amido played an important role. In addition, the interfacial transfer intermediates and oxidation pathways were also explored by nuclear magnetic resonance, flourier transform infrared spectroscopy, surface tension, and radical inhibition experiments. The mechanism of advanced oxidation of NAs catalyzed by CO-responsive phase transfer catalyst was proposed, which would made up for the deficiency of the system theory of heterogeneous chemical oxidation of organic pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.173235DOI Listing

Publication Analysis

Top Keywords

phase transfer
16
co-responsive phase
12
advanced oxidation
12
transfer materials
8
oxidation organic
8
surface tension
8
oxidation
6
phase
5
transfer
5
nas
5

Similar Publications

Saturated sp-carbon nanothreads (CNTh) have garnered significant interest due to their predicted high Young's modulus and thermal conductivity. While the incorporation of heteroatoms into the central ring has been shown to influence the formation of CNTh and yield chemically homogeneous products, the impact of pendant groups on the polymerization process remains underexplored. In this study, we investigate the pressure-induced polymerization of phenol, revealing two phase transitions occurring below 0.

View Article and Find Full Text PDF

Semiconductor nanomaterials and nanostructured interfaces have important technological applications, ranging from fuel production to electrosynthesis. Their photocatalytic activity is known to be highly heterogeneous, both in an ensemble of nanomaterials and within a single entity. Photoelectrochemical imaging techniques are potentially useful for high-resolution mapping of photo(electro)catalytic active sites; however, the nanoscale spatial resolution required for such experiments has not yet been attained.

View Article and Find Full Text PDF

Stabilizing bicontinuous particle-stabilized emulsions formed solvent transfer-induced phase separation.

Soft Matter

January 2025

Van 't Hoff Laboratory of Physical and Colloid Chemistry, Department of Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.

Bicontinuous particle-stabilized emulsions (bijels) are unique soft materials that combine the bulk properties of two immiscible fluids into a single interconnected structure. This structure is achieved through the formation of two interwoven fluid networks, stabilized by an interfacial layer of colloidal particles. Bijels with submicron-scale domain networks can be synthesized solvent transfer-induced phase separation (STrIPS).

View Article and Find Full Text PDF

Spontaneous Bubble Growth Inside High-Saturation-Vapor-Pressure and High-Air-Solubility Liquids and Emulsion Droplets.

Langmuir

January 2025

Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Avenue, Sofia 1164, Bulgaria.

Spontaneous bubble growths in liquids are usually triggered by rapid changes in pressure or temperature that can lead to liquid gas supersaturation. Here, we report alternative scenarios of the spontaneous growths of bubbles inside a high-saturation-vapor-pressure and high-air-solubility perfluorocarbon liquid (PP1) that were observed under ambient quiescent conditions. First, we investigate spontaneous bubble growth inside the single PP1 phase, which was left to evaporate freely.

View Article and Find Full Text PDF

Phase contrast imaging is well-suited for studying weakly scattering samples. Its strength lies in its ability to measure how the phase of the electron beam is affected by the sample, even when other imaging techniques yield low contrast. In this study, we explore via simulations two phase contrast techniques: integrated center of mass (iCOM) and ptychography, specifically using the extended ptychographical iterative engine (ePIE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!