AI Article Synopsis

  • This research identifies thousands of proteins in jujube that undergo posttranslational modifications, specifically crotonylation (Kcr) and succinylation (Ksu), in response to phytoplasma infection.
  • Among these, Kcr appears to play a more predominant role, affecting proteins related to ribosome function and metabolism.
  • The study highlights the significance of specific crotonylation sites in the antioxidant enzyme ZjPHGPX2 and suggests that altering these sites affects its activity under stress conditions. *

Article Abstract

Background: Protein posttranslational modifications (PTMs) are fast and early responses to environmental changes, including pathogen infection. Jujube witches' broom (JWB) is a phytoplasma disease causing great economic loss in jujube production. After phytoplasma infection, the transcriptional, translational, and metabolic levels in jujube were activated, enabling it to survive during phytoplasma invasion. However, no study has yet reported on PTMs in jujube. Lysine crotonylation (Kcr) and lysine succinylation (Ksu) have been popular studies in recent years and their function in plant phytoplasma-stress responses remains unclear.

Results: Here, 1656 crotonylated and 282 succinylated jujube proteins were first identified under phytoplasma-stress, of which 198 were simultaneously crotonylated and succinylated. Comparative analysis revealed that 656 proteins, 137 crotonylated and 43 succinylated proteins in jujube were regulated by phytoplasma infection, suggesting that Kcr was more universal than Ksu. Kcr differentially expressed proteins (DEPs) were related to ribosomes, photosynthetic and carbon metabolism, while Ksu DEPs were mainly involved in carbon metabolism, the TCA cycle and secondary metabolite biosynthesis. The crosstalk network among proteome, crotonylome and succinylome showed that DEPs related to ribosomal, peroxidases and glutathione redox were enriched. Among them, ZjPOD51 and ZjPHGPX2 significantly increased at the protein and Kcr level under phytoplasma-stress. Notably, 7 Kcr sites were identified in ZjPHGPX2, a unique antioxidant enzyme. After inhibitor nicotinamide (NAM) treatment, GPX enzyme activity in jujube seedlings was reduced. Further, site-directed mutagenesis of key Kcr modification sites K130 and/or K135 in ZjPHGPX2 significantly reduced its activity.

Conclusions: This study firstly provided large-scale datasets of Kcr and Ksu in phytoplasma-infected jujube and revealed that Kcr modification in ZjPHGPX2 positively regulates its activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11094900PMC
http://dx.doi.org/10.1186/s12915-024-01917-xDOI Listing

Publication Analysis

Top Keywords

crotonylated succinylated
12
jujube
9
succinylated proteins
8
proteins jujube
8
phytoplasma-stress responses
8
phytoplasma infection
8
kcr
8
carbon metabolism
8
kcr modification
8
proteins
5

Similar Publications

Insights on post-translational modifications in fatty liver and fibrosis progression.

Biochim Biophys Acta Mol Basis Dis

January 2025

Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology Campus, Anna University, Chrompet, Chennai 600 044, Tamil Nadu, India. Electronic address:

Metabolic dysfunction-associated steatotic liver disease [MASLD] is a pervasive multifactorial health burden. Post-translational modifications [PTMs] of amino acid residues in protein domains demonstrate pivotal roles for imparting dynamic alterations in the cellular micro milieu. The crux of identifying novel druggable targets relies on comprehensively studying the etiology of metabolic disorders.

View Article and Find Full Text PDF

Background: Posttranslational modifications (PTMs) play critical roles in hepatocellular carcinoma (HCC). However, the locations of PTM-modified sites across protein secondary structures and regulatory patterns in HCC remain largely uncharacterized.

Methods: Total proteome and nine PTMs (phosphorylation, acetylation, crotonylation, ubiquitination, lactylation, N-glycosylation, succinylation, malonylation, and β-hydroxybutyrylation) in tumor sections and paired normal adjacent tissues derived from 18 HCC patients were systematically profiled by 4D-Label free proteomics analysis combined with PTM-based peptide enrichment.

View Article and Find Full Text PDF

Crosstalk between metabolic and epigenetic modifications during cell carcinogenesis.

iScience

December 2024

State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.

Genetic mutations arising from various internal and external factors drive cells to become cancerous. Cancerous cells undergo numerous changes, including metabolic reprogramming and epigenetic modifications, to support their abnormal proliferation. This metabolic reprogramming leads to the altered expression of many metabolic enzymes and the accumulation of metabolites.

View Article and Find Full Text PDF

Global Insights into the Lysine Acetylome Reveal the Role of Lysine Acetylation in the Adaptation of to Salt Stress.

J Proteome Res

January 2025

College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Agricultural University, Tai'an 271018, China.

Article Synopsis
  • A certain beneficial microorganism in the rhizosphere enhances plant growth and tolerance to salt stress, but the specific mechanisms at the post-translational modification level were not well understood.
  • Researchers identified various lysine modifications, specifically noting that acetylation levels increased significantly in response to salt stress, affecting a large number of proteins involved in vital processes related to salt tolerance.
  • The study also highlighted how specific acetylation sites on a protective enzyme, thiol peroxidase, play a crucial role in managing reactive oxygen species, thus influencing bacterial growth under salt conditions.
View Article and Find Full Text PDF

Histone post-translational modifications (HPTMs), as one of the core mechanisms of epigenetic regulation, are garnering increasing attention due to their close association with the onset and progression of diseases and their potential as targeted therapeutic agents. Advances in high-throughput molecular tools and the abundance of bioinformatics data have led to the discovery of novel HPTMs which similarly affect gene expression, metabolism, and chromatin structure. Furthermore, a growing body of research has demonstrated that novel histone modifications also play crucial roles in the development and progression of various diseases, including various cancers, cardiovascular diseases, infectious diseases, psychiatric disorders, and reproductive system diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!