A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Concomitant Prediction of the Ki67 and PIT-1 Expression in Pituitary Adenoma Using Different Radiomics Models. | LitMetric

Concomitant Prediction of the Ki67 and PIT-1 Expression in Pituitary Adenoma Using Different Radiomics Models.

J Imaging Inform Med

Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, 100070, Beijing, China.

Published: May 2024

Objectives: To preoperatively predict the high expression of Ki67 and positive pituitary transcription factor 1 (PIT-1) simultaneously in pituitary adenoma (PA) using three different radiomics models.

Methods: A total of 247 patients with PA (training set: n = 198; test set: n = 49) were included in this retrospective study. The imaging features were extracted from preoperative contrast-enhanced T1WI (T1CE), T1-weighted imaging (T1WI), and T2-weighted imaging (T2WI). Feature selection was performed using Spearman's rank correlation coefficient and least absolute shrinkage and selection operator (LASSO). The classic machine learning (CML), deep learning (DL), and deep learning radiomics (DLR) models were constructed using logistic regression (LR), support vector machine (SVM), and multi-layer perceptron (MLP) algorithms. The area under the receiver operating characteristic (ROC) curve (AUC), sensitivity, specificity, accuracy, negative predictive value (NPV) and positive predictive value (PPV) were calculated for the training and test sets. In addition, combined with clinical characteristics, the best CML and the best DL models (SVM classifier), the DL radiomics nomogram (DLRN) was constructed to aid clinical decision-making.

Results: Seven CML features, 96 DL features, and 107 DLR features were selected to construct CML, DL and DLR models. Compared to CML and DL model, the DLR model had the best performance. The AUC, sensitivity, specificity, accuracy, NPV and PPV were 0.827, 0.792, 0.800, 0.796, 0.800 and 0.792 in the test set, respectively.

Conclusions: Compared with CML and DL models, the DLR model shows the best performance in predicting the Ki67 and PIT-1 expression in PAs simultaneously.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10278-024-01121-xDOI Listing

Publication Analysis

Top Keywords

ki67 pit-1
8
pit-1 expression
8
pituitary adenoma
8
test set
8
deep learning
8
dlr models
8
auc sensitivity
8
sensitivity specificity
8
specificity accuracy
8
compared cml
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!