Multicomponent oxides are intriguing materials in heterogeneous catalysis, and the interface between various components often plays an essential role in oxidations. However, the underlying principles of how the hetero-interface affects the catalytic process remain largely unexplored. Here we report a unique structure design of MnCoO catalysts by chemical reduction, specifically for ethane oxidation. Part of the Mn ions incorporates with Co oxides to form spinel MnCoO, while the rests stay as MnO domains to create the MnO-MnCoO interface. MnCoO with Mn/Co ratio of 0.5 exhibits an excellent activity and stability up to 1000 h under humid conditions. The synergistic effects between MnO and MnCoO are elucidated, in which the CH tends to be adsorbed on the interfacial Co sites and subsequently break the C-H bonds on the reactive lattice O of MnO layer. Findings from this study provide valuable insights for the rational design of efficient catalysts for alkane combustion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11096404 | PMC |
http://dx.doi.org/10.1038/s41467-024-48120-8 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Laboratory of Crystallographic Studies, Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científica, Armilla 18100, Spain.
Revealing the origin of life and unambiguously detecting fossil remains of the earliest organisms are closely related aspects of the same scientific research. The synthesis of prebiotic molecular building blocks of life and the first compartmentalization into protocells have been considered two events apart in time, space, or both. We conducted lightning experiments in borosilicate reactors filled with a mixture of gases mimicking plausible geochemical conditions of early Earth.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.
Emulsion interface engineering has been widely employed for the synthesis of nanomaterials with various morphologies. However, the instability of the liquid-liquid interface and uncertain interfacial interactions impose significant limitations on controllable fabrications. Here, we developed a liquid-nano-liquid interface-oriented anisotropic encapsulation strategy for fabricating asymmetric nanohybrids.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.
Cognition relies on transforming sensory inputs into a generalizable understanding of the world. Mirror neurons have been proposed to underlie this process, mapping visual representations of others' actions and sensations onto neurons that mediate our own, providing a conduit for understanding. However, this theory has limitations.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390.
Neurotransmitter release is triggered in microseconds by Ca-binding to the Synaptotagmin-1 C-domains and by SNARE complexes that form four-helix bundles between synaptic vesicles and plasma membranes, but the coupling mechanism between Ca-sensing and membrane fusion is unknown. Release requires extension of SNARE helices into juxtamembrane linkers that precede transmembrane regions (linker zippering) and binding of the Synaptotagmin-1 CB domain to SNARE complexes through a "primary interface" comprising two regions (I and II). The Synaptotagmin-1 Ca-binding loops were believed to accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers, or helping bridge the membranes, but SNARE complex binding through the primary interface orients the Ca-binding loops away from the fusion site, hindering these putative activities.
View Article and Find Full Text PDFPLoS One
January 2025
Graduate School of Humanities and Social Sciences, Kyoto University of Advanced Science, Kyoto, Japan.
The joint Simon effect refers to inhibitory responses to spatially competing stimuli during a complementary task. This effect has been considered to be influenced by the social factors of a partner: sharing stimulus-action representation. According to this account, virtual interactions through their avatars would produce the joint Simon effect even when the partner did not physically exist in the same space because the avatars are intentional agents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!