A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Self-Assembly of the Porphyrin Monomer on the Surface of Fe/Graphene Material: A Novel Sensing Material for the Detection of Chloramphenicol Antibiotic in Aqueous solution. | LitMetric

Currently, electrochemical sensors are being developed and widely used in various fields, and new materials are being explored to enhance the precision and selectivity of the sensors. The present investigation involved the fabrication of a Fe/graphene/porphyrin nanocomposite through self-assembly, wherein the individual porphyrin molecules were arranged on the Fe/graphene nanomaterials' surface. The Fe/graphene nanoparticles were synthesized utilizing a green approach, wherein leaf extract was employed as the reducing agent. The resulting materials underwent comprehensive characterization using a range of contemporary techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and Raman spectroscopy. The study's findings revealed that the nanocomposites of Fe/graphene/porphyrin comprised zero-valent iron nanoparticles, exhibiting an average particle size ranging from 15 to 60 nm. These nanoparticles were seen to be evenly dispersed across the graphene sheets. The presence of nanostructure porphyrin nanofibers, measuring 20 nm in diameter, was also shown to exhibit strong integration with the surface of the Fe/graphene nanomaterials. The electrochemical properties of the Fe/graphene/porphyrin nanocomposite were also investigated, demonstrating that the prepared material could be effectively employed as a sensing electrode in the electrochemical sensor for detecting Chloramphenicol (CAP) through CV, EIS, and DPV techniques using a three-electrode electrochemical system. Under optimal conditions, Fe/graphene/porphyrin exhibited a high current response when detecting CAPs. Electrochemical sensors created using Fe/graphene/porphyrin nanocomposite have high stability and repeatability, and they hold promise in developing sensors capable of identifying other antibiotic residues in agriculture.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.202400355DOI Listing

Publication Analysis

Top Keywords

surface fe/graphene
12
fe/graphene/porphyrin nanocomposite
12
electrochemical sensors
8
electrochemical
5
fe/graphene/porphyrin
5
self-assembly porphyrin
4
porphyrin monomer
4
monomer surface
4
fe/graphene
4
fe/graphene material
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!