Effect of carboxymethyl chitosan on the storage stability of rice dough during frozen storage.

Int J Biol Macromol

College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China; Collaborative Innovation Center of Seafood Deep Processing, Ministry of Education, Dalian 116034, China. Electronic address:

Published: June 2024

In this study, we aimed to determine the effect of carboxymethyl chitosan (CMCh) and carboxymethyl cellulose sodium (CMCNa) on the quality of frozen rice dough. We used a variety of methods to conduct a thorough investigation of frozen rice dough, including nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, size exclusion high-performance liquid chromatography (SE-HPLC), X-ray diffraction (X-RD), differential scanning calorimetry (DSC), and rapid visco analyzer (RVA). Our findings showed that frozen storage caused significant damage to the texture of rice dough, and this damage was reduced by the inclusion of CMCh, which led to a gradual change in the orderly structure of proteins. The degree of cross-linking between CMCh-B (DS:1; 0.5 %, 1 %, and 1.5 %) and the large protein polymer was significantly higher than that between CMCh-A (DS:0.8; 0.5 %, 1 %, and 1.5 %) and CMCNa (DS:1; 1 %), which decreased the ability of bound water to become free water. This resulted in the increase of tan δ, which effectively delayed the structural transformation of frozen rice dough. Furthermore, the introduction of CMCh delayed the immediate order of starch and crystal structure modifications, altering the thermal properties and pasting qualities of the frozen rice dough. Therefore, 1.5 % CMCh-B showed the best protective effect on frozen rice dough.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.131913DOI Listing

Publication Analysis

Top Keywords

rice dough
28
frozen rice
20
carboxymethyl chitosan
8
frozen storage
8
05 % 1 %
8
1 % 15 %
8
rice
7
dough
7
frozen
7
chitosan storage
4

Similar Publications

Background: The application of beneficial microbes in agriculture is gaining increasing attention as a means to reduce reliance on chemical fertilizers. This approach can potentially mitigate negative impacts on soil, animal, and human health, as well as decrease climate-changing factors. Among these microbes, yeast has been the least explored, particularly within the phyllosphere compartment.

View Article and Find Full Text PDF

To improve the toughness of the rice dough, protein transglutaminase (TGase) combined with sodium metabisulfite (SMB) modification was used. The influences of modification on rice dough and protein were investigated, and their physicochemical and structural characteristics were analyzed. Mechanical analysis results indicated that the tanδ and texture characteristics of the modified rice dough were close to those of the wheat dough.

View Article and Find Full Text PDF

Effects of rolling on eating quality, starch structure, and water distribution in cooked indica rice dough.

J Sci Food Agric

December 2024

School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Parkville, Victoria, Australia.

Background: Given the composition of rice and its lack of gluten proteins, rice flour fails to form a cohesive and elastic dough when mixed directly with water. Consequently, many rice products rely on rice sheets (RS) made by rolling cooked rice dough. Limited research exists on how the rolling process impacts the properties and structure of cooked indica rice dough.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used methods like plate coating and 16S high-throughput sequencing to analyze the types and amounts of these microorganisms over the flowering, milk ripening, dough, and full ripening stages.
  • * Findings showed that Lactic acid bacteria peaked at flowering, yeast at milk ripening, and mold at full ripening, highlighting the influence of growth stages on the microbial community, which can inform better silage preparation strategies.
View Article and Find Full Text PDF

Improved properties of dough fermented with rice wine prepared by mixed SF7 and SC1.

Food Sci Biotechnol

December 2024

National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001 China.

Unlabelled: In view of the special aptitudes of the yeast population in both rice wine production and dough fermentation, in this study, the characteristics of dough fermented with rice wine prepared from mixed SF7 and SC1 (JFC) were evaluated and compared with those of dough fermented directly with the two yeast co-cultures (FC). Dough inoculated with JFC showed higher acidity, reducing sugar content and leavening activity than dough fermented with FC. The water distribution pattern and pasting properties of the JFC-fermented dough changed dramatically after fermentation, and the dough microstructure and extensibility were improved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!