Zinc finger protein 471 (ZNF471) is a member of the Krüppel-related domain zinc finger protein family, and has recently attracted attention because of its anti-cancer effects. N-glycosylation regulates expression and functions of the protein. This study aimed to investigate the effects of ZNF471 N-glycosylation on the proliferation, invasion, and docetaxel sensitivity of tongue squamous cell carcinoma (TSCC). It analyzed the expression, function, and prognostic significance of ZNF471 in TSCC using bioinformatics techniques such as gene differential expression analysis, univariate Cox regression analysis, functional enrichment analysis, and gene set enrichment analysis. Using site-specific mutagenesis, this study generated three mutant sites for ZNF471 N-glycosylation to determine the effect of N-glycosylation on ZNF471 protein levels and function. Quantitative real-time PCR, Western blot analysis, and immunohistochemistry tests confirmed the down-regulation of ZNF471 expression in TSCC. Low expression of ZNF471 is associated with poor prognosis of patients with TSCC. Overexpression of ZNF471 in vitro retarded the proliferation of TSCC cells and suppressed cell invasion and migration ability. Asparagine 358 was identified as a N-glycosylation site of ZNF471. Suppressing N-glycosylation of ZNF471 enhanced the protein stability and promoted the translocation of protein to the cell nucleus. ZNF471 binding to c-Myc gene promoter suppressed oncogene c-Myc expression, thereby playing the anti-cancer effect and enhancing TSCC sensitivity to docetaxel. In all, N-glycosylation of ZNF471 affects the proliferation, invasion, and docetaxel sensitivity of TSCC via regulation of c-Myc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ajpath.2024.01.022 | DOI Listing |
Sci Adv
January 2025
Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
Hedgehog (Hh) morphogen governs embryonic development and tissue homeostasis through the Ci/Gli family transcription factors. Here we report that Hh induces phase separation of the fused (Fu)/Ulk family kinases to allosterically regulate Ci/Gli. We find that Hh-induced phosphorylation of Fu/Ulk3 promotes SUMOylation of their inverted phosphorylation-dependent SUMOylation motifs.
View Article and Find Full Text PDFDevelopment
January 2025
Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
Emerging evidence suggests that the nuclear pore complex can have unique compositions and distinct nucleoporin functions in different cells. Here, we show that Nup107, a key component of the NPC scaffold, varies in expression over development: it is expressed at higher levels in the blastula compared to the gastrula suggesting a critical role prior to gastrulation. We find depletion of Nup107 affects the differentiation of the early germ layers leading to an expansion of the ectoderm at the expense of endoderm and mesoderm.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, No.12, Health Road, Shijiazhuang City, 050011, Hebei Province, China.
This article focusing on examining the function and further, molecular function of SHP2 in ovarian cancer (OC). For the molecular mechanism, bioinformatics was applied to study the specifically expressed genes in ovarian cancer ; the western blotting was applied to identify the EGF, p-SHP2, ZEB1, and E-Cadherin expressions in ovarian cancer tissue and pair adjacent tissue; then SKOV3 cells were treated with EGF and infected with E-Cadherin overexpression lentivirus, and then cells were treated with benzyl butyl phthalate and IRS-1 respectively. Detection of expression of p-SHP2, ZEB1, E-Cadherin, α3-integrin, p-Src, p-SMAD2, Snail, Slug and SKOV3 cells of migration and invasion abilities were detected using Western blot method and cell scratch assay and Transwell assay; Progression of ovarian cancer was detected using subcutaneous tumor transplantation assay in nude mice and HE staining method and immunocyto.
View Article and Find Full Text PDFVet Microbiol
January 2025
Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China.
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly contagious swine pathogen, causing respiratory problems in piglets and reproductive failure in sows. Palmitoylation, catalyzed by zinc finger Asp-His-His-Cys (ZDHHC) domain-containing palmitoyl acyltransferases, plays intricate roles in virus infection. However, whether palmitoylation regulates PRRSV replication is incompletely understood.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China. Electronic address:
Phosphoinositide kinase, FYVE-type zinc finger containing (PIKFYVE) was recently identified as a causative gene for cataract. Pikfyve phosphatidylinositol phosphate kinase domain-deficient (pikfyve) zebrafish lens and PIKFYVE-inhibited human lens epithelial cells developed vacuoles, colocalized with late endosome marker RAB7. In this study, the pikfyvezebrafish with vacuole-like cataract underwent transcriptomic and proteomic analyses to explore the underlying mechanisms of vacuole formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!