A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting hematoma expansion using machine learning: An exploratory analysis of the ATACH 2 trial. | LitMetric

Predicting hematoma expansion using machine learning: An exploratory analysis of the ATACH 2 trial.

J Neurol Sci

NYU Langone Medical Center, Department of Neurology, New York, NY 10016, United States of America; NYU Langone Medical Center, Department of Neurosurgery, New York, NY 10016, United States of America.

Published: June 2024

Introduction: Hematoma expansion (HE) in patients with intracerebral hemorrhage (ICH) is a key predictor of poor prognosis and potentially amenable to treatment. This study aimed to build a classification model to predict HE in patients with ICH using deep learning algorithms without using advanced radiological features.

Methods: Data from the ATACH-2 trial (Antihypertensive Treatment of Acute Cerebral Hemorrhage) was utilized. Variables included in the models were chosen as per literature consensus on salient variables associated with HE. HE was defined as increase in either >33% or 6 mL in hematoma volume in the first 24 h. Multiple machine learning algorithms were employed using iterative feature selection and outcome balancing methods. 70% of patients were used for training and 30% for internal validation. We compared the ML models to a logistic regression model and calculated AUC, accuracy, sensitivity and specificity for the internal validation models respective models.

Results: Among 1000 patients included in the ATACH-2 trial, 924 had the complete parameters which were included in the analytical cohort. The median [interquartile range (IQR)] initial hematoma volume was 9.93.mm [5.03-18.17] and 25.2% had HE. The best performing model across all feature selection groups and sampling cohorts was using an artificial neural network (ANN) for HE in the testing cohort with AUC 0.702 [95% CI, 0.631-0.774] with 8 hidden layer nodes The traditional logistic regression yielded AUC 0.658 [95% CI, 0.641-0.675]. All other models performed with less accuracy and lower AUC. Initial hematoma volume, time to initial CT head, and initial SBP emerged as most relevant variables across all best performing models.

Conclusion: We developed multiple ML algorithms to predict HE with the ANN classifying the best without advanced radiographic features, although the AUC was only modestly better than other models. A larger, more heterogenous dataset is needed to further build and better generalize the models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jns.2024.123048DOI Listing

Publication Analysis

Top Keywords

hematoma volume
12
hematoma expansion
8
machine learning
8
learning algorithms
8
atach-2 trial
8
feature selection
8
internal validation
8
logistic regression
8
initial hematoma
8
best performing
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!