A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Disinfectant-induced ammonia oxidation disruption in microbial N-cycling process in aquatic ecosystem after the COVID-19 outbreak. | LitMetric

Anthropogenic activities significantly impact the elemental cycles in aquatic ecosystems, with the N-cycling playing a critical role in potential nutrient turnover and substance cycling. We hypothesized that measures to prevent COVID-19 transmission profoundly altered the nitrogen cycle in riverine ecosystems. To investigate this, we re-analyzed metagenomic data and identified 60 N-cycling genes and 21 host metagenomes from four urban reaches (one upstream city, Wuhan, and two downstream cities) along the Yangtze River. Our analyses revealed a marked decrease in the abundance of bacterial ammonia monooxygenase genes, as well as in the host, ammonia-oxidizing autotrophic Nitrosomonas, followed by a substantial recovery post-pandemic. We posited that discharge of sodium hypochlorite (NaOCl) disinfectant may be a primary factor in the reduction of N-cycling process. To test this hypothesis, we exposed pure cultures of Nitrosomonas europaea to NaOCl to explore the microbial stress response. Results indicated that NaOCl exposure rapidly compromised the cell structure and inhibited ammonia oxidation of N. europaea, likely due to oxidative stress damage and reduced expression of nitrogen metabolism-related ammonia monooxygenase. Using the functional tagging technique, we determined that NaOCl directly destroyed the ammonia monooxygenase protein and DNA structure. This study highlights the negative impacts of chlorine disinfectants on the function of aquatic ecosystems and elucidates potential mechanisms of action.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.121761DOI Listing

Publication Analysis

Top Keywords

ammonia monooxygenase
12
ammonia oxidation
8
n-cycling process
8
aquatic ecosystems
8
disinfectant-induced ammonia
4
oxidation disruption
4
disruption microbial
4
n-cycling
4
microbial n-cycling
4
process aquatic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!