AI Article Synopsis

  • * The research found that PAA treatment improved cell proliferation and reduced apoptosis in human cardiac microvascular endothelial cells (HCMECs) subjected to oxygen glucose deprivation, simulating MI.
  • * PAA was shown to enhance autophagy, promote angiogenesis, and activate the AMPK/mTOR signaling pathway, suggesting its potential as a therapeutic agent for MI recovery.

Article Abstract

Myocardial infarction (MI) is a kind of cardiovascular diseases with high morbidity and mortality. Poricoic acid A (PAA) is the main active substance in Poria cocos, which has been discovered to exhibit an ameliorative role in the progression of many diseases. However, no report has been focused on the regulatory effects of PAA on MI progression. In this study, at first, oxygen glucose deprivation (OGD) treatment was performed in human cardiac microvascular endothelial cells (HCMECs) to mimic MI cell model. Our findings demonstrated that cell proliferation was reduced post OGD treatment, but which was reversed by PAA treatment. Moreover, PAA suppressed cell apoptosis in OGD-triggered HCMEC cells. Next, it revealed that PAA induced autophagy in OGD-treated HCMEC cells through enhancing LC3-II/LC3-I level and reducing P62 level. In addition, PAA strengthened the angiogenesis ability and migration ability in OGD-induced HCMEC cells. Lastly, it was uncovered that PAA modulated the AMPK/mTOR signaling pathway through affecting the p-mTOR/mTOR and p-AMPK/AMPK levels. In conclusion, PAA can promote angiogenesis and myocardial regeneration after MI by inducing autophagy through modulating the AMPK/mTOR pathway. This work suggested that PAA may be a potential and useful drug for MI treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tice.2024.102401DOI Listing

Publication Analysis

Top Keywords

hcmec cells
12
paa
9
poricoic acid
8
angiogenesis myocardial
8
myocardial regeneration
8
regeneration inducing
8
inducing autophagy
8
myocardial infarction
8
ogd treatment
8
acid promotes
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Alzheimer's Center at Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.

Background: Recent evidence suggests that cerebrovascular dysfunction may precede and contribute to amyloid beta-(Aβ)-mediated pathology in Alzheimer's Disease (AD), particularly promoting endothelial cell damage and stress, causing the cerebral blood flow impairments, cerebral hypoperfusion, and blood brain barrier (BBB) permeability that are pathologically characteristic in AD. Studies have emerged suggesting a link between cardiovascular diseases and AD pathology, showing that cerebrovascular/cardiovascular risk factors (CVRFs), including hyperhomocysteinemia (Hhcy) and hypertension (HTN), and the cerebral consequences of these CVRFs, such as cerebral hypoperfusion, contribute to AD pathology and risk. Despite this, the underlying molecular mechanisms for these associations remain unclear.

View Article and Find Full Text PDF

Red grapes contain resveratrol (Resv), a polyphenol with anti-inflammatory, anti-diabetic, and anticancer properties. In this study, in silico molecular docking was used to assess the binding affinity of Resv to target proteins. Resv was encapsulated in PEGylated liposomes (LNPs) using Phospholipon 90G, cholesterol, and DSPE-mPEG.

View Article and Find Full Text PDF

Unlabelled: Microbiota-released extracellular vesicles (MEVs) have emerged as a key player in intercellular signaling. However, their involvement in the gut-brain axis has been poorly investigated. We hypothesize that MEVs cross host cellular barriers and deliver their cargoes of bioactive compounds to the brain.

View Article and Find Full Text PDF

Extracellular Vesicles From Preeclampsia Disrupt the Blood-Brain Barrier by Reducing CLDN5.

Arterioscler Thromb Vasc Biol

December 2024

Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (H.S., B.I., M.C., F.T., E.E.-G., J.A., C.E.).

Background: The physiopathology of life-threatening cerebrovascular complications in preeclampsia is unknown. We investigated whether disruption of the blood-brain barrier, generated using circulating small extracellular vesicles (sEVs) from women with preeclampsia or placentae cultured under hypoxic conditions, impairs the expression of tight junction proteins, such as CLDN5 (claudin-5), mediated by VEGF (vascular endothelial growth factor), and activation of KDR (VEGFR2 [VEGF receptor 2]).

Methods: We perform a preclinical mechanistic study using sEVs isolated from plasma of pregnant women with normal pregnancy (sEVs-NP; n=9), sEVs isolated from plasma of women with preeclampsia (sEVs-PE; n=9), or sEVs isolated from placentas cultured in normoxia (sEVs-Nor; n=10) or sEVs isolated from placentas cultured in hypoxia (sEVs-Hyp; n=10).

View Article and Find Full Text PDF

Background: Diabetes mellitus-induced erectile dysfunction (DMED) responds poorly to first-line treatments, necessitating the development of new therapeutic strategies. Relaxin-2 (RLX-2) plays a crucial role in protecting vascular endothelium, vasodilatation, and antifibrosis in various diseases. However, its effects and mechanisms on DMED remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!