In situ studies under severe plastic deformation at high pressures, employing shear diamond anvil cells, have recently gained much interest in the high-pressure community owing to their potential applications in material processing methods, mechanochemistry, and geophysics. These studies, combined with multi-scale computational simulations, provide important insights into the transient hierarchical microstructural evolution, structural phase transitions, and orientation relationship between parent and daughter phases and help establish the kinetics of strain-induced phase transitions under severe plastic deformation. The existing SDACs are mostly used in axial x-ray diffraction geometry due to geometrical constraints providing less reliable information about stress states and texture. Their asymmetric design also poses serious limitations to high-pressure shear studies on single crystals. To overcome these limitations, a new compact symmetric shear diamond anvil cell has been designed and developed for in situ high-pressure torsion studies on materials. The symmetric angular opening and short working distance in this new design help obtain a more reliable crystallographic orientation distribution function and lattice strain states up to a large Q range. Here, we present the advantages of the symmetric design with a few demonstrative studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0193048 | DOI Listing |
Materials (Basel)
December 2024
Hunan Province Engineering Research Center for High Thermal Conductivity Metal-Matrix Composites, Hunan Harvest Technology Development Co., Changsha 410219, China.
Spark plasma sintering (SPS) is an effective technique for studying the diffusion bonding of diamond/Cu composites, and has the potential to advance the application of copper matrix composites. This study investigates the SPS diffusion bonding of diamond/Cu composites using a chromium (Cr) interlayer. The effects of process parameters on the microstructure and mechanical properties of the bonding interface were evaluated through shear strength testing and SEM analysis.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Department of Restorative Dentistry, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan.
Objectives: To evaluate the shear bond strength (SBS) of universal cements (UCs) to dentin prepared with different diamond burs using various adhesive strategies.
Materials And Methods: One-hundred-twenty molars were prepared to expose the mid-coronal dentin. The teeth were divided into two groups according to diamond bur preparations: coarse and super-fine grit burs.
J Funct Biomater
November 2024
King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia.
The aim of the study is to assess the impact of mechanical surface treatments on the shear bond strength (SBS) of orthodontic brackets bonded to three-dimensional (3D) printed and milled CAD/CAM provisional materials. Sixty cylindrical samples were fabricated for each provisional material. Samples were treated with one of the following surface treatments: aluminum oxide airborne particle abrasion, diamond bur rotary instrument roughening, and phosphoric acid etching (control).
View Article and Find Full Text PDFInt Endod J
December 2024
School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia.
Aim: All commercial chelating gels contain EDTA which reacts chemically with sodium hypochlorite (NaOCl). This research aimed to develop a non-EDTA clodronate gel and to measure physicochemical and functional gel properties of the novel and commercial gels.
Methodology: A 1.
Nanomaterials (Basel)
November 2024
School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.
A green chemical shear-thickening polishing (GC-STP) method was studied to improve the surface precision and processing efficiency of monocrystalline silicon. A novel green shear-thickening polishing slurry composed of silica nanoparticles, alumina abrasive, sorbitol, plant ash, polyethylene glycol, and deionized water was formulated. The monocrystalline silicon was roughly ground using a diamond polishing slurry and then the GC-STP process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!