Documenting the seasonal temperature cycle constitutes an essential step toward mitigating risks associated with extreme weather events in a future warmer world. The mid-Piacenzian Warm Period (mPWP), 3.3 to 3.0 million years ago, featured global temperatures approximately 3°C above preindustrial levels. It represents an ideal period for directed paleoclimate reconstructions equivalent to model projections for 2100 under moderate Shared Socioeconomic Pathway SSP2-4.5. Here, seasonal clumped isotope analyses of fossil mollusk shells from the North Sea are presented to test Pliocene Model Intercomparison Project 2 outcomes. Joint data and model evidence reveals enhanced summer warming (+4.3° ± 1.0°C) compared to winter (+2.5° ± 1.5°C) during the mPWP, equivalent to SSP2-4.5 outcomes for future climate. We show that Arctic amplification of global warming weakens mid-latitude summer circulation while intensifying seasonal contrast in temperature and precipitation, leading to an increased risk of summer heat waves and other extreme weather events in Europe's future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11095466PMC
http://dx.doi.org/10.1126/sciadv.adl6717DOI Listing

Publication Analysis

Top Keywords

extreme weather
8
weather events
8
amplified seasonality
4
seasonality western
4
western europe
4
europe warmer
4
warmer documenting
4
documenting seasonal
4
seasonal temperature
4
temperature cycle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!