Despite the many articles about activated carbon with different precursors in adsorption process, no in-depth research has been carried out to understand the causes of the difference in surface adsorption characteristics of activated carbon with different precursors and different activation processes. In this work, the ability of two active carbon adsorbents made of walnut shell and peach kernel by two chemical and physical methods (totally 4 different types of activated carbon) in treatment of oily wastewater including diesel, gasoline, used oil or engine lubricant has been compared. The results show that the chemical activated peach carbon active with 97% hardness has provided the highest hardness and physical activated walnut carbon active has obtained the lowest hardness value (87%). It is also found that peach activated carbon has a higher iodine number than walnut activated carbon, and this amount can be increased using chemical methods; Therefore, the highest amount of Iodine Number is related to Peach activated carbon that is made by chemical method (1230 mg/g), and the lowest amount of iodine number is seen in walnut activated carbon that is made by physical method (1020 mg/g). moreover, the pore diameter of physical activated carbon is lower than chemical activated carbon in all cases. So that the pore diameter of chemical activated peach carbon active is equal to 22.08 μm and the measured pore diameter of physical activated peach carbon active is equal to 20.42 μm. These values for walnut are obtained as 22.74 μm and 21.86 μm, respectively. Furthermore, the temperature and pH effects on the adsorption of different synthesized oily wastewater was studied and it was found that a decrease in adsorption can be seen with an increase in temperature or decreasing the pH value, which can be referred to this fact that the process of adsorption is an exothermic process. Finally, to analyze the compatibility of adsorption isotherms with experimental data and to predict the adsorption process, three different isotherms named Langmuir, Temkin, and Freundlich isotherms were applied and their parameters were correlated. The correlation results show that the Langmuir isotherm had the best correlation in all cases compared to the Freundlich and Temkin isotherms, based on the correlation coefficient, and the calculated R2 values which was greater than 0.99 in all the studied cases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11095765 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0297024 | PLOS |
Sci Rep
January 2025
Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
This study explores the enhanced adsorption performance of activated carbon felt (ACF) for Cu(II) and Cd(II) ions, achieved using a dual-synergistic approach combining MnO coating and plasma treatment. ACF's intrinsic properties, including a high surface area (~ 1000-2000 m²/g), large porosity, and excellent mechanical stability, make it a promising material for environmental applications. However, its limited surface functional groups hinder its adsorption efficiency for heavy metals.
View Article and Find Full Text PDFEnviron Res
January 2025
Chemical Process Engineering, P.O. Box 4300, FIN-90014 University of Oulu, Oulu, Finland.
A low-cost and renewable magnetite-pine bark (MPB) sorbent was evaluated in continuous-flow systems for the removal of various pharmaceuticals from municipal wastewater effluent following membrane bioreactor (MBR) treatment. A 33-day small-scale column test (bed volume: 791 cm) was conducted using duplicate columns of biochar (BC, Novocarbo) and activated carbon (AC, ColorSorb) as reference for two columns of BC and MPB in order to compare the efficiency of AC and MPB. After the small-scale column test, the pharmaceutical concentrations were generally below the detection limit.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
The State University of New York College of Environmental Science and Forestry, Syracuse, USA.
Polychlorinated biphenyls (PCBs) are persistent organic pollutants and are emitted during e-waste activities. Once they enter into the environment, PCBs could pose toxic effects to environmental compartments and public health. Reductive dechlorination offers a sustainable solution to manage the PCBs-contaminated environment.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Civil and Environmental Engineering, School of Environment and Society, Institute of Science Tokyo, Meguro-ku, Tokyo, 152-8552, Japan.
The treatment of antibiotic wastewater often faces the challenge of simultaneously and effectively degrading multiple components under complex conditions. To address this challenge, magnetite nanoparticles doped ultrafine activated charcoal powder (MNPs/UACP), which effectively catalyzed the decomposition of HO into •OH and HO•, was prepared using chemical co-precipitation. Under optimum conditions (i.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos, 12228-900 São Paulo, Brazil.
Polycyclic aromatic hydrocarbons (PAHs) exhibit intriguing characteristics that position them as promising candidates for advancements in organic semiconductor technologies. Notably, tetracene finds substantial utility in Electronics due to its application in organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs). The strategic introduction of an isoelectronic boron-nitrogen (B,N) pair to replace a carbon-carbon pair in acenes introduces changes in the electronic structure, allowing for the controlled modulation of diradical characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!