A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Rhizobacterial community and growth-promotion trait characteristics of Zea mays L. inoculated with Pseudomonas fluorescens UM270 in three different soils. | LitMetric

Rhizobacterial community and growth-promotion trait characteristics of Zea mays L. inoculated with Pseudomonas fluorescens UM270 in three different soils.

Folia Microbiol (Praha)

Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México en Celaya, 38010, Celaya, Gto, México.

Published: December 2024

There is an increasing demand for bioinoculants based on plant growth-promoting rhizobacteria (PGPR) for use in agricultural ecosystems. However, there are still concerns and limited data on their reproducibility in different soil types and their effects on endemic rhizosphere communities. Therefore, this study explored the effects of inoculating the PGPR, Pseudomonas fluorescens strain UM270, on maize growth (Zea mays L.) and its associated rhizosphere bacteriome by sequencing the 16S ribosomal genes under greenhouse conditions. The results showed that inoculation with PGPR P. fluorescens UM270 improved shoot and root dry weights, chlorophyll concentration, and total biomass in the three soil types evaluated (clay, sandy-loam, and loam) compared to those of the controls. Bacterial community analysis of the three soil types revealed that maize plants inoculated with the UM270 strain showed a significant increase in Proteobacteria and Acidobacteria populations, whereas Actinobacteria and Bacteroidetes decreased. Shannon, Pielou, and Faith alpha-biodiversity indices did not reveal significant differences between treatments. Beta diversity revealed a bacterial community differential structure in each soil type, with some variation among treatments. Finally, some bacterial groups were found to co-occur and co-exclude with respect to UM270 inoculation. Considered together, these results show that PGPR P. fluorescens UM270 increases maize plant growth and has an important effect on the resident rhizobacterial communities of each soil type, making it a potential agricultural biofertilizer.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12223-024-01171-2DOI Listing

Publication Analysis

Top Keywords

fluorescens um270
12
soil types
12
zea mays
8
pseudomonas fluorescens
8
pgpr fluorescens
8
three soil
8
bacterial community
8
soil type
8
um270
6
soil
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!