The multiparticle collision dynamics (MPCD) simulation method is an attractive technique for studying the effects of hydrodynamic interactions in colloidal suspensions because of its flexibility, computational efficiency, and ease of implementation. Here, we analyze an extension of the basic MPCD method in which colloidal particles are discretized with a surface mesh of sensor nodes/particles that interact with solvent particles (MPCD + Discrete Particle or MPCD + DP). We use several situations that have been described analytically to probe the impact of colloidal particle mesh resolution on the ability of the MPCD + DP method to resolve short-ranged hydrodynamic interactions, which are important in crowded suspensions and especially in self-assembling systems that create high volume fraction phases. Specifically, we consider (A) hard-sphere diffusion near a wall, (B) two-particle diffusion, (C) hard-sphere diffusion in crowded suspensions, and (D) the dynamics of aggregation in an attractive colloidal suspension. We show that in each case, the density of sensor nodes plays a significant role in the accuracy of the simulation and that a surprisingly high number of surface nodes are needed to fully capture hydrodynamic interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0197818 | DOI Listing |
Curr Res Food Sci
January 2025
School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Liuzhou, 545006, China.
The combination of polyphenols and protein can improve the functional characteristics of protein. How to effectively promote the binding of polyphenols to protein is still a difficult topic. In this study, hydrodynamic cavitation (HC) was used to induce the fabrication of complexes between soy protein isolate (SPI) and different polyphenols (tannic acid (TA), chlorogenic acid (CGA), ferulic acid (FA), caffeic acid (CA), and gallic acid (GA)).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Food Science & Technology, Seoul Women's University, Seoul 01797, Republic of Korea.
Titanium dioxide (TiO), a white color food additive, is widely used in bakery products, candies, chewing gums, soups, and creamers. Concerns about its potential genotoxicity have recently emerged, particularly following the European Union's ban on its usage as a food additive due to its genotoxicity potential. Conflicting in vitro and in vivo results regarding its genotoxicity highlight the need for further in-depth investigation.
View Article and Find Full Text PDFSci Rep
January 2025
Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
Phytoplankton blooms exhibit varying patterns in timing and number of peaks within ecosystems. These differences in blooming patterns are partly explained by phytoplankton:nutrient interactions and external factors such as temperature, salinity and light availability. Understanding these interactions and drivers is essential for effective bloom management and modelling as driving factors potentially differ or are shared across ecosystems on regional scales.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Saint-Petersburg State Institute of Technology, Technical University, 190013 Saint Petersburg, Russia.
New aromatic co-polyamide-imides (coPAIs) containing both carboxyl and hydroxyl groups in the repeating units were synthesized for the first time. Transport, thermal and morphological properties of dense nonporous membranes from PAIs obtained using the diacid chloride of 2-(4-carboxyphenyl)-1,3-dioxoisoindoline-5-carboxylic acid and diamines 5,5'-methylene-bis (2-aminophenol)) and 3,5-Diaminobenzoic acid, taken in molar ratios of 7:3, 1:1, and 3:7, have been studied. High levels of membrane permeability accompanied by high selectivity for mixtures of liquids with significantly different polarities were determined by realization of intra- and intermolecular interactions in polymer, which was proved by thermal analyses and hydrodynamic characteristics of coPAIs.
View Article and Find Full Text PDFGels
December 2024
College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
This study evaluated the potential usage of phosphorylated egg white protein (P-EWP) nanogels fabricated via microwave-induced phosphorylation modification and gel process and further ultrasonic nanometrization as novel delivery systems for cinnamon bark essential oil (CBEO). Compared to EWP-CBEO nanogels without chemical phosphorylation, the obtained P-EWP-CBEO nanogels have shown smaller average hydrodynamic diameter (133.6 nm), relatively uniform size distribution (polydispersity index around 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!