As the most important solvent, water has been at the center of interest since the advent of computer simulations. While early molecular dynamics and Monte Carlo simulations had to make use of simple model potentials to describe the atomic interactions, accurate ab initio molecular dynamics simulations relying on the first-principles calculation of the energies and forces have opened the way to predictive simulations of aqueous systems. Still, these simulations are very demanding, which prevents the study of complex systems and their properties. Modern machine learning potentials (MLPs) have now reached a mature state, allowing us to overcome these limitations by combining the high accuracy of electronic structure calculations with the efficiency of empirical force fields. In this Perspective, we give a concise overview about the progress made in the simulation of water and aqueous systems employing MLPs, starting from early work on free molecules and clusters via bulk liquid water to electrolyte solutions and solid-liquid interfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0201241DOI Listing

Publication Analysis

Top Keywords

aqueous systems
12
water aqueous
8
machine learning
8
learning potentials
8
molecular dynamics
8
simulations
6
perspective atomistic
4
atomistic simulations
4
water
4
simulations water
4

Similar Publications

Toxicity mechanism of metal-organic framework HKUST-1 and its carbonized product to Tetradesmus obliquus: Physiological and transcriptomic analysis.

Comp Biochem Physiol C Toxicol Pharmacol

January 2025

School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China. Electronic address:

Metal-organic frameworks (MOFs) are emerging materials with unique structures and properties, which have been widely used in many fields due to their various advantages. However, compared with its popular application research, the ecological safety of MOFs has rarely been reported. In this paper, a biological model, the common freshwater green algae Tetradesmus obliquus (T.

View Article and Find Full Text PDF

Design of pH-responsive and amphiphilic pullulan-based biological macromolecule for gene delivery.

Int J Biol Macromol

January 2025

Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, D-07743 Jena, Germany; Jena Center for Soft Matters (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany. Electronic address:

Nanomedicine, particularly gene delivery, holds immense potential and offers promising therapeutic options. Non-viral systems gained attention due to their binding capacity, stability and scalability. Among these, natural polysaccharides, such as pullulan, are advantageous in terms of sustainability, biocompatibility and potential degradability.

View Article and Find Full Text PDF

Designing advanced materials that effectively mitigate the poor cycle life of battery-type electrodes with high specific capacities is crucial for next-generation energy storage systems. Herein, graphene oxide-ceria (GO-CeO) nanocomposite synthesized via a facile wet chemical route is explored as cathode for high-performance supercapacitors. The morphological analysis suggests fine ceria (CeO) nanoparticles dispersed over ultrathin graphene oxide (GO) sheets while structural studies reveal face-centered cubic phase of CeO in the nanocomposite.

View Article and Find Full Text PDF

Hydrogel Strain Sensors for Integrating Into Dynamic Organ-on-a-Chip.

Small

January 2025

Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.

Current hydrogel strain sensors have never been integrated into dynamic organ-on-a-chip (OOC) due to the lack of sensitivity in aqueous cell culture systems. To enhance sensing performance, a novel strain sensor is presented in which the MXene layer is coated on the bottom surface of a pre-stretched anti-swelling hydrogel substrate of di-acrylated Pluronic F127 (F127-DA) and chitosan (CS) for isolation from the cell culture on the top surface. The fabricated strain sensors display high sensitivity (gauge factor of 290.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS)-containing firefighting foam have been used in stationary fire suppression systems for several decades. However, there is a lack of research on how to decontaminate PFAS-contaminated infrastructure and evaluate treatment efficiency. This study assessed the removal of PFAS from stainless steel pipe surfaces using different cleaning agents (tap water, methanol, and aqueous solutions containing 10 and 20 wt % of butyl carbitol (BC)) at different temperatures (20 °C, 40 °C, and 70 °C).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!