Click chemistry refers to selective reactions developed for grafting of bio(macro)molecules in their biological media. Caged click compounds have been employed to spatiotemporally control click reactions. Here, we survey the uncaging of photo-dibenzocyclooctyne-OH (photoDIBO-OH) to its click-chemistry active form DIBO-OH, with particular attention to its conversion timescale and efficiency. Ultraviolet pump-infrared probe experiments reveal a stepwise decarbonylation: first, carbon monoxide (C≡O) is released within 1.8 ps, and then, it converts, within 10 ps, to DIBO-OH. Completion of uncaging is achieved with an efficiency of ∼50%. A successful demonstration of two-photon uncaging of photoDIBO-OH at long wavelength (700 nm) confers enhanced in vivo compatibility and proceeds on the same timescale.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0196923DOI Listing

Publication Analysis

Top Keywords

switch click
4
click ultrafast
4
ultrafast photochemistry
4
photochemistry photodibo-oh
4
photodibo-oh tracked
4
tracked time-resolved
4
time-resolved spectroscopy
4
spectroscopy click
4
click chemistry
4
chemistry refers
4

Similar Publications

Article Synopsis
  • The negative symptoms of schizophrenia, like lack of emotion and motivation, are hard to treat and significantly impact daily functioning.
  • This review highlights current research on treatment options for these symptoms, categorizing them into different types and evaluating various assessment scales.
  • Although no treatments are conclusively proven as the best for these symptoms, some off-label and investigational medications show promise, including cariprazine and memantine, and further research is needed to explore new therapeutic possibilities.
View Article and Find Full Text PDF
Article Synopsis
  • A novel type of superabsorbent hydrogels was created by cross-linking hydrophilic poly(vinylphosphonates) through a process called photochemical reaction, which involves light to trigger the bonding.
  • The process included synthesizing specific copolymers using a rare earth metal technique, followed by modifications to introduce vinylphosphonic acid, leading to significant water absorption capabilities of up to 150g of water per g of hydrogel.
  • The hydrogels were shown to respond to changes in pH, with experiments demonstrating their ability to swell and deswell reversibly in response to acidic or basic environments, making them suitable for use as sensors in various applications.
View Article and Find Full Text PDF

Background: Acceptability, appropriateness, and feasibility are established implementation outcomes used to understand stakeholders' perceptions of an intervention. Further, they are thought to provide insight into behaviors, such as adoption. To date, measurement instruments for the three outcomes have focused on their individual assessment whilst nodding to the idea that they may interrelate.

View Article and Find Full Text PDF

Optical control of sphingolipid biosynthesis using photoswitchable sphingosines.

J Lipid Res

December 2024

Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany; Center for Cellular Nanoanalytics, Osnabrück University, Artilleriestraße 77, 49076 Osnabrück, Germany. Electronic address:

Sphingolipid metabolism comprises a complex interconnected web of enzymes, metabolites and modes of regulation that influence a wide range of cellular and physiological processes. Deciphering the biological relevance of this network is challenging as numerous intermediates of sphingolipid metabolism are short-lived molecules with often opposing biological activities. Here, we introduce clickable, azobenzene-containing sphingosines, termed caSphs, as light-sensitive substrates for sphingolipid biosynthesis.

View Article and Find Full Text PDF

Sphingolipid metabolism comprises a complex interconnected web of enzymes, metabolites and modes of regulation that influence a wide range of cellular and physiological processes. Deciphering the biological relevance of this network is challenging as numerous intermediates of sphingolipid metabolism are short-lived molecules with often opposing biological activities. Here, we introduce clickable, azobenzene-containing sphingosines, termed s, as light-sensitive substrates for sphingolipid biosynthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!