Cr(VI) and phenol commonly coexist in wastewater, posing a great threat to the environment and human health. However, it is still a challenge for microorganisms to degrade phenol under high Cr(VI) stress. In this study, the phenol-degrading strain ZWB3 was co-cultured with the Cr(VI)-reducing strain MZ-1 to enhance phenol biodegradation under Cr(Ⅵ) stress. Compared with phenol-degrading strain ZWB3, which has weak tolerance to Cr(Ⅵ), and Cr(Ⅵ)-reducing strain MZ-1, which has no phenol-degrading ability, the co-culture of two strains could significantly increase the degraded rate and capacity of phenol. In addition, the co-cultured strains exhibited phenol degradation ability over a wide pH range (7-10). The reduced content of intracellular proteins and polysaccharides produced by the co-cultured strains contributed to the enhancement of phenol degradation and Cr(Ⅵ) tolerance. The determination coefficients , RMSE, and MAPE showed that the BP-ANN model could predict the degradation of phenol under various conditions, which saved time and economic cost. The metabolic pathway of microbial degradation of phenol was deduced by metabolic analysis. This study provides a valuable strategy for wastewater treatment containing Cr(Ⅵ) and phenol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2024.147 | DOI Listing |
Acta Pharm
December 2024
University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Pharmacognosy 10000 Zagreb, Croatia.
Biowaste produced in urban parks is composed of large masses of organic matter that is only occasionally used economically. In this work, extracts of six plants widely distributed in urban parks in Central Europe (, , , , , and ), prepared using 10 % and 50 % ethanol, were screened for their antidiabetic and related properties. HPLC and UV-Vis analysis revealed the presence of caffeic acid, quercetin, luteolin, and apigenin derivatives.
View Article and Find Full Text PDFScience
January 2025
Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
Sociosexual preference is critical for reproduction and survival. However, neural mechanisms encoding social decisions on sex preference remain unclear. In this study, we show that both male and female mice exhibit female preference but shift to male preference when facing survival threats; their preference is mediated by the dimorphic changes in the excitability of ventral tegmental area dopaminergic (VTA) neurons.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaan'xi, China.
Increasing evidence suggests that dysbiosis of gut microbiota exacerbates chronic kidney disease (CKD) progression. Curcumin (CUR) has been reported to alleviate renal fibrosis in animal models of CKD. However, the relationship between CUR and gut microbiome in CKD remains unclear.
View Article and Find Full Text PDFPLoS One
January 2025
Neurorehabilitation and Biomechanics Research Section, Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States of America.
Children with cerebral palsy (CP) often participate in training to improve mobility, hand function and other motor abilities. However, responses to these interventions vary considerably across individuals even those with similar brain injuries, ages and functional levels. Dopamine is a neurotrasmitter known to affect motor skill acquistion in animals and humans and may be influenced by individual variations in genes related to brain transmission of dopamine.
View Article and Find Full Text PDFAnticancer Drugs
January 2025
School of Clinical Medicine, Guizhou Medical University, Guiyang City, Guizhou, China.
Eugenol, a phenolic natural product with diverse pharmacological activities, remains unexplored in liver cancer. Using network pharmacology, we investigated eugenol's therapeutic mechanisms in liver cancer. We obtained eugenol's molecular structure from PubChem and screened its targets using similarity ensemble approach in Swiss Target Predictiondatabases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!