A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A hybrid water quality prediction model based on variational mode decomposition and bidirectional gated recursive unit. | LitMetric

Water quality predicted accuracy is beneficial to river ecological management and water pollution prevention. Owing to water quality data has the characteristics of nonlinearity and instability, it is difficult to predict the change of water quality. This paper proposes a hybrid water quality prediction model based on variational mode decomposition optimized by the sparrow search algorithm (SSA-VMD) and bidirectional gated recursive unit (BiGRU). First, the sparrow search algorithm selects fuzzy entropy (FE) as the fitness function to optimize the two parameters of VMD, which improves the adaptability of VMD. Second, SSA-VMD is used to decompose the original data into several components with different center frequencies. Finally, BiGRU is employed to predict each component separately, which significantly improves predicted accuracy. The proposed model is validated using data about dissolved oxygen (DO) and the potential of hydrogen (pH) from the Xiaojinshan Monitoring Station in Qiandao Lake, Hangzhou, China. The experimental results show that the proposed model has superior prediction accuracy and stability when compared with other models, such as EMD-based models and other CEEMDAN-based models. The prediction accuracy of DO can reach 97.8% and pH is 96.1%. Therefore, the proposed model can provide technical support for river water quality protection and pollution prevention.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2024.133DOI Listing

Publication Analysis

Top Keywords

water quality
24
proposed model
12
hybrid water
8
quality prediction
8
prediction model
8
model based
8
based variational
8
variational mode
8
mode decomposition
8
bidirectional gated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!