Instantaneous peak flows (IPFs) are often required to derive design values for sizing various hydraulic structures, such as culverts, bridges, and small dams/levees, in addition to informing several water resources management-related activities. Compared to mean daily flows (MDFs), which represent averaged flows over a period of 24 h, information on IPFs is often missing or unavailable in instrumental records. In this study, conventional methods for estimating IPFs from MDFs are evaluated and new methods based on the nonlinear regression framework and machine learning architectures are proposed and evaluated using streamflow records from all Canadian hydrometric stations with natural and regulated flow regimes. Based on a robust model selection criterion, it was found that multiple methods are suitable for estimating IPFs from MDFs, which precludes the idea of a single universal method. The performance of machine learning-based methods was also found reasonable compared to conventional and regression-based methods. To build on the strengths of individual methods, the fusion modeling concept from the machine learning area was invoked to synthesize outputs of multiple methods. The study findings are expected to be useful to the climate change adaptation community, which currently heavily relies on MDFs simulated by hydrologic models.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2024.096DOI Listing

Publication Analysis

Top Keywords

machine learning
12
instantaneous peak
8
peak flows
8
nonlinear regression
8
methods
8
estimating ipfs
8
ipfs mdfs
8
multiple methods
8
estimation instantaneous
4
flows
4

Similar Publications

T-helper 17 (Th17) cells significantly influence the onset and advancement of malignancies. This study endeavor focused on delineating molecular classifications and developing a prognostic signature grounded in Th17 cell differentiation-related genes (TCDRGs) using machine learning algorithms in head and neck squamous cell carcinoma (HNSCC). A consensus clustering approach was applied to The Cancer Genome Atlas-HNSCC cohort based on TCDRGs, followed by an examination of differential gene expression using the limma package.

View Article and Find Full Text PDF

Ultrasensitive Detection of Circulating Plasma Cells Using Surface-Enhanced Raman Spectroscopy and Machine Learning for Multiple Myeloma Monitoring.

Anal Chem

January 2025

Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, China.

Multiple myeloma is a hematologic malignancy characterized by the proliferation of abnormal plasma cells in the bone marrow. Despite therapeutic advancements, there remains a critical need for reliable, noninvasive methods to monitor multiple myeloma. Circulating plasma cells (CPCs) in peripheral blood are robust and independent prognostic markers, but their detection is challenging due to their low abundance.

View Article and Find Full Text PDF

Background: Sepsis, a critical global health challenge, accounted for approximately 20% of worldwide deaths in 2017. Although the Sequential Organ Failure Assessment (SOFA) score standardizes the diagnosis of organ dysfunction, early sepsis detection remains challenging due to its insidious symptoms. Current diagnostic methods, including clinical assessments and laboratory tests, frequently lack the speed and specificity needed for timely intervention, particularly in vulnerable populations such as older adults, intensive care unit (ICU) patients, and those with compromised immune systems.

View Article and Find Full Text PDF

Purpose: Adaptive radiotherapy accounts for interfractional anatomic changes. We hypothesize that changes in the gross tumor volumes identified during daily scans could be analyzed using delta-radiomics to predict disease progression events. We evaluated whether an auxiliary data set could improve prediction performance.

View Article and Find Full Text PDF

Purpose: Establishing an accurate prognosis remains challenging in older patients with cancer because of the population's heterogeneity and the current predictive models' reduced ability to capture the complex interactions between oncologic and geriatric predictors. We aim to develop and externally validate a new predictive score (the Geriatric Cancer Scoring System [GCSS]) to refine individualized prognosis for older patients with cancer during the first year after a geriatric assessment (GA).

Materials And Methods: Data were collected from two French prospective multicenter cohorts of patients with cancer 70 years and older, referred for GA: ELCAPA (training set January 2007-March 2016) and ONCODAGE (validation set August 2008-March 2010).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!