Dysregulation of glycolysis is frequently linked to aggressive tumor activity in colorectal cancer (CRC). Although serine peptidase inhibitor, Kazal type 4 (SPINK4) has been linked to CRC, its exact linkage to glycolytic processes and gene expression remains unclear. Differentially expressed genes (DEGs) were screened from two CRC-related datasets (GSE32323 and GSE141174), followed by expression and prognostic analysis of SPINK4. In vitro techniques such as flow cytometry, western blotting, transwell assay, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to assess SPINK4 expression in CRC cells. Its effects on apoptosis, glycolysis, and the cell cycle were also investigated. Finally, the impact of SPINK4 overexpression on tumor development was assessed using a xenograft model, while histological and immunohistochemical analyses characterized SPINK4 expression patterns in CRC tissues. SPINK4 expression was downregulated in CRC, correlating with poor patient prognosis. In vitro assays confirmed that overexpression of SPINK4 reduced CRC cell proliferation, invasion, and migration, while its knockdown promoted these processes and caused G1 arrest. SPINK4 also regulated apoptosis by altering caspase activation and Bcl-2 expression. Besides, SPINK4 overexpression altered glycolytic activity, reduced 2-Deoxy-D-glucose (2-DG) absorption, and controlled critical glycolytic enzymes, resulting in alterations in metabolic pathways, whereas SPINK4 knockdown reversed this effect. SPINK4 overexpression significantly reduced tumor volume in vivo, indicating its inhibitory role in carcinogenesis. Moreover, high expression of SPINK4, hexokinase 2 (HK2), glucose transporter 1 (GLUT1), lactate dehydrogenase A (LDHA), and pyruvate kinase M2 (PKM2) was observed in CRC tissues. As a key inhibitor of glycolytic metabolism in CRC, SPINK4 promises metabolic intervention in CRC therapy due to its impact on tumor growth and cell proliferation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496861 | PMC |
http://dx.doi.org/10.17305/bb.2024.10338 | DOI Listing |
Cell Commun Signal
October 2024
Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Emory University, Atlanta, GA, USA.
Background: The prostaglandin receptor PTGER4 facilitates homeostasis in the gut. Previous reports indicate that goblet cells, marked by SPINK4 expression, might be affected by PTGER4 activity. Current evidence suggests that prostaglandin E2 (PGE2) produced by mesenchymal stromal cells (MSC) stimulates PTGER4 in epithelial cells during inflammatory conditions.
View Article and Find Full Text PDFNat Commun
July 2024
Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.
Mucus injury associated with goblet cell (GC) depletion constitutes an early event in inflammatory bowel disease (IBD). Using single-cell sequencing to detect critical events in mucus dysfunction, we discover that the Kazal-type serine protease inhibitor SPINK4 is dynamically regulated in colitic intestine in parallel with disease activities. Under chemically induced colitic conditions, the grim status in Spink4-conditional knockout mice is successfully rescued by recombinant murine SPINK4.
View Article and Find Full Text PDFAging (Albany NY)
June 2024
Department of Hepatobiliary Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.
HCC, also known as hepatocellular carcinoma, is a frequently occurring form of cancer with an unfavorable prognosis. This research constructed a prognostic signature related to ubiquitination and investigated its correlation with the response to immunotherapy in HCC. The Molecular Signatures Database provided a compilation of genes associated with ubiquitination.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
May 2024
Second Affiliated Hospital of Anhui University of Chinese Medicine, Anhui 230000, China.
Objective: To explore the potential pathogenic genes of intestinal metaplasia.
Methods: Twenty-one patients with intestinal metaplasia admitted to the Department of Gastroenterology at the Second Affiliated Hospital of Anhui University of Chinese Medicine from January, 2022 to June, 2022, and 21 healthy subjects undergoing gastroscopic examination during the same period were enrolled in this study. All the participants underwent gastroscopy and pathological examination, and gastric tissue samples were collected for transcriptome sequencing to screen for differentially expressed genes (DEGs).
Biomol Biomed
October 2024
Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital and AHS, Fudan University, Shanghai, China.
Dysregulation of glycolysis is frequently linked to aggressive tumor activity in colorectal cancer (CRC). Although serine peptidase inhibitor, Kazal type 4 (SPINK4) has been linked to CRC, its exact linkage to glycolytic processes and gene expression remains unclear. Differentially expressed genes (DEGs) were screened from two CRC-related datasets (GSE32323 and GSE141174), followed by expression and prognostic analysis of SPINK4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!