AI Article Synopsis

Article Abstract

As electric vehicles, portable electronic devices, and tools have increasingly high requirements for battery energy density and power density, constantly improving battery performance is a research focus. Accurate measurement of the structure-activity relationship of active materials is key to advancing the research of high-performance batteries. However, conventional performance tests of active materials are based on the electrochemical measurement of porous composite electrodes containing active materials, polymer binders, and conductive carbon additives, which cannot establish an accurate structure-activity relationship with the physical characterization of microregions. In this review, in order to promote the accurate measurement and understanding of the structure-activity relationship of materials, the electrochemical measurement and physical characterization of energy storage materials at single-particle scale are reviewed. The potential problems and possible improvement schemes of the single particle electrochemical measurement and physical characterization are proposed. Their potential applications in single particle electrochemical simulation and machine learning are prospected. This review aims to promote the further application of single particle electrochemical measurement and physical characterization in energy storage materials, hoping to achieve 3D unified evaluation of physical characterization, electrochemical measurement, and theoretical simulation at the single particle scale to provide new inspiration for the development of high-performance batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202400683DOI Listing

Publication Analysis

Top Keywords

electrochemical measurement
20
physical characterization
20
structure-activity relationship
16
single particle
16
high-performance batteries
12
active materials
12
measurement physical
12
particle electrochemical
12
single-particle scale
8
development high-performance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!