Multifunctional Nanocarrier for Synergistic Treatment of Alzheimer's Disease by Inhibiting β-Amyloid Aggregation and Scavenging Reactive Oxygen Species.

ACS Appl Mater Interfaces

State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.

Published: May 2024

The excessive depositions of β-amyloid (Aβ) and abnormal level of reactive oxygen species (ROS) are considered as the important pathogenic factors of Alzheimer's disease (AD). Strategies targeting only one of them have no obvious effects in clinic. In this study, a multifunctional nanocarrier CICe@M-K that crosses the blood-brain barrier (BBB) efficiently was developed for inhibiting Aβ aggregation and scavenging ROS synchronously. Antioxidant curcumin (Cur) and photosensitizer IR780 were loaded in mesoporous silica nanomaterials (MSNs). Their surfaces were grafted with cerium oxide nanoparticles (CeO NPs) and a short peptide K (CKLVFFAED). Living imaging showed that CICe@M-K was mainly distributed in the brain, liver, and kidneys, indicating CICe@M-K crossed BBB efficiently and accumulated in brain. After the irradiation of 808 nm laser, Cur was continuously released. Both of Cur and the peptide K can recognize and bind to Aβ through multiple interaction including π-π stacking interaction, hydrophobic interaction, and hydrogen bond, inhibiting Aβ aggregation. On the other hand, Cur and CeO NPs cooperate to relieve the oxidative stress in the brains by scavenging ROS. assays showed that the CICe@M-K could diminish Aβ depositions, alleviate oxidative stress, and improve cognitive ability of the APP/PS1 AD mouse model, which demonstrated that CICe@M-K is a potential agent for AD treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c02825DOI Listing

Publication Analysis

Top Keywords

multifunctional nanocarrier
8
alzheimer's disease
8
aggregation scavenging
8
reactive oxygen
8
oxygen species
8
bbb efficiently
8
inhibiting aβ
8
aβ aggregation
8
scavenging ros
8
ceo nps
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!