Soft actuators possessing notable mechanical deformations, high sensitivity, and fast response speed play a crucial role in various applications, such as artificial muscles, soft robots, and intelligent devices. In this study, a smart humidity-driven actuator was successfully fabricated by utilizing MXene/cellulose nanofiber (CNF)/LiCl (MCL) through vacuum-assisted filtration with fast response speed and high sensitivity. Utilizing the excellent humidity responsiveness of MXene/CNF and the robust hygroscopicity of LiCl, the synergistic effect of these materials enhances the hygroscopic properties and response speed of the actuator. The MCL actuator demonstrates excellent actuation performance, fast deformation, and reliable cyclic stability. To illustrate the extensive potential of the soft actuator, a range of applications, from bionic devices to soft grippers and crawling actuators, are showcased. Remarkably, the crawling actuator demonstrates sustained crawling motion without necessitating a humidity switch, relying on the humidity gradient from water droplets, and exhibits spontaneous directional motions within a certain range, which makes it a promising prospect in the field of soft robotics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c04111 | DOI Listing |
EClinicalMedicine
February 2025
Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China.
Background: Brain stimulation therapy (BST) has significant potential in treating psychiatric, movement, and cognitive disorders. Given the high prevalence of comorbidities among these disorders, we conducted an umbrella review to comprehensively assess the efficacy of BSTs in treating the core symptoms across these three categories of disorders.
Methods: We systematically searched for meta-analyses and network meta-analyses of randomized controlled trials with sham controls up to September 25, 2024, from databases including PubMed, PsycINFO, Embase, and the Cochrane Library.
Chem Sci
January 2025
School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou 221116 China
Reactive oxygen species (ROS) play a critical role in regulating various physiological processes. To gain a comprehensive understanding of their distinct functions in different physiological events, it is imperative to detect binary ROS simultaneously. However, the development of the sensing method capable of binary ROS detection remains a significant challenge.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
Department of General Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research (DMIHER), Wardha, India.
Background: Cardiac autonomic neuropathy (CAN) is a significant complication in chronic kidney disease (CKD), leading to increased morbidity and mortality. Early detection is essential for managing CKD patients effectively, especially those on hemodialysis. This study evaluated the prevalence CAN in CKD and diagnostic accuracy of Bellavere's Score in predicting CAN in CKD patients, including those undergoing hemodialysis.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China.
Electrochemical biosensors can provide an economical, accurate and rapid method for early screening of disease biomarkers in clinical medicine due to their high sensitivity, selectivity, portability, low cost and easy manufacturing, and multiplexing capability. Tear, a fluid naturally secreted by the human body, is not only easily accessible but also contains a great deal of biological information. However, no bibliometric studies focus on applying electrochemical sensors in tear/eye diseases.
View Article and Find Full Text PDFFront Immunol
January 2025
Laboratory of Cell Hemostasis, Chazov National Medical Research Center of Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia.
Introduction: Chronic inflammation is a major risk factor for coronary artery disease (CAD). Currently, the inflammatory cardiovascular risk is assessed via C-reactive protein (CRP) levels measured using a high-sensitivity assay (hsCRP). Monomeric CRP (mCRP) is a locally produced form of CRP that has emerged as a potential biomarker of inflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!