In this research, thermal modeling has been done to investigate the effect of nanofluid on the performance of the linear parabolic collector. Therminol vapor/liquid phase fluid (VP-1) has been used as a base fluid; iron oxide nanoparticles have been used to produce mono-nanofluid; and iron oxide multi-walled carbon nanotubes nanocomposite has been used as nanoparticles to produce hybrid nanofluid. The fluid flow inside the absorber tube of the collector is assumed to be turbulent. The results show that when hybrid nanofluid and mono-nanofluid are used, the energy and exergy efficiencies of the collector are higher than those for the conditions of using the base fluid, but their amount is slightly lower with the use of hybrid nanofluid than when the working fluid is mono-nanofluid. According to the obtained results, the highest energy efficiency of the linear parabolic collector using nanofluid and mono-nanofluid is 70.2% and 70.4%, respectively, and the highest exergy efficiency is 35.7% and 35.9%, respectively. Despite this, the friction coefficient of mono-nanofluid compared to hybrid nanofluid was obtained on average about 9% higher. The results showed that the criterion for evaluating the performance of the collector (hydrodynamic thermal efficiency) when hybrid nanofluid is used is more than when mono-nanofluid is used.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0203755 | DOI Listing |
Adv Mater
January 2025
Hubei key laboratory of energy storage and power battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China.
The inherent trade-off between permeability and selectivity has constrained further improvement of passive linear force-electric conversion performance in nanofluidic pressure sensors. To overcome this limitation, a 3D nanofluidic membrane with high mechanical strength utilizing aramid nanofibers/carbon nanofiber (ANF/CNF) dual crosslinking is developed. Due to the abundant surface functional groups of CNF and the high mechanical strength of ANF, this large-scale integrated 3D nanofluidic membrane exhibits advantages of high flux, high porosity, and short ion transport path, demonstrating superior force-electric response compared to conventional 1D and 2D configurations.
View Article and Find Full Text PDFSci Rep
January 2025
Civil Engineering Department, Kardan University, Kabul, Afghanistan.
The current research deals with analytical analysis of Marangoni convection on ethylene glycol base hybrid nanofluid two-dimension flow with viscous dissipation through a porous medium, which have some important application in mechanical, civil, electronics, and chemical engineering. Two types of nanoparticles one is sliver and other is graphene oxide and ethylene glycol is used as base fluid in this research work. The authors applied appropriate transformations to convert a collection of dimension form of nonlinear partial differential equations to dimensionless form of nonlinear ordinary differential equations.
View Article and Find Full Text PDFHeliyon
December 2024
School of Mechanical Engineering, Institute of Technology, Wallaga University, P.O. Box 395, Nekemte, Ethiopia.
Turning AISI (American Iron and Steel Institute) D3 tool steel can be challenging due to a lack of optimal process parameters and proper coolant application to achieve high surface quality and temperature control. Machine learning helps in predicting the optimal parameters, whereas nanofluids enhance cooling efficiency while preserving both the tool and the workpiece. This work intends to utilize advanced machine learning approaches to optimize process parameters with the application of hybrid nanofluids (AlO/graphene) during the CNC turning of AISI D3.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia. Electronic address:
This study focuses on enhancing solar energy capture efficiency by introducing innovative hybrid nanofluids for use in solar thermal collectors, whose performance largely depends on the absorption properties of the working fluid. The newly developed hybrid nanofluids, MXene/NH2-UiO66 (Zr) (noted as MX/UO66) and MXene/MIL-88B (Fe) (noted as MX/ML88), were synthesized using an in-situ solvothermal method, combining annealed Ti3C2Tx MXenes with water-stable metal-organic frameworks (MOFs). These nanofluids achieved high efficiency at low concentrations, providing both economic and performance benefits.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mechanical Engineering, Delhi Skill and Entrepreneurship University, Delhi, 110089, India.
This study explores the thermal conductivity and viscosity of water-based nanofluids containing silicon dioxide, graphene oxide, titanium dioxide, and their hybrids across various concentrations (0 to 1 vol%) and temperatures (30 to 60 °C). The nanofluids, characterized using multiple methods, exhibited increased viscosity and thermal conductivity compared to water, with hybrid nanofluids showing superior performance. Graphene oxide nanofluids displayed the highest thermal conductivity and viscosity ratios, with increases of 52% and 177% at 60 °C and 30 °C, respectively, for a concentration of 1 vol% compared to base fluid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!