Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This work analyzes vacuum gas oil (VGO) and hydrocracking products of this feed blended with polymethylmethacrylate (PMMA) or polyethylene terephthalate (PET) to clarify the oxygen, nitrogen, and sulfur removal pathways in these complex mixtures. Hydrocracking reactions are conducted in a semi-batch reactor with a Pt-Pd/HY bifunctional catalyst at 400 °C and 80 bar for 300 min with 10 wt % waste plastic using 0.1 catalyst/feed weight ratio. The samples are analyzed using various techniques, including high-resolution mass spectrometry, providing an improved, more detailed analytical representation. The results demonstrate the synergistic effect of cofeeding oxygenated plastics to the VGO, altering the preferential reaction pathways of heteroatom-containing species in the following order: nitrogen, oxygen, and sulfur. We assess the nature of the species from the gathered data, establish plausible reaction mechanisms, and evaluate the catalyst's role.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202400581 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!