Idiopathic systemic capillary leak syndrome (ISCLS) is a rare, recurrent condition with dramatically increased blood vessel permeability and, therefore, induction of systemic edema, which may lead to organ damage and death. In this issue of the JCI, Ablooglu et al. showed that ISCLS vessels were hypersensitive to agents known to increase vascular permeability, using human biopsies, cell culture, and mouse models. Several endothelium-specific proteins that regulate endothelial junctions were dysregulated and thereby compromised the vascular barrier. These findings suggest that endothelium-intrinsic dysregulation underlies hyperpermeability and implicate the cytoplasmic serine/threonine protein phosphatase 2A (PP2A) as a potential drug target for the treatment of ISCLS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11093593 | PMC |
http://dx.doi.org/10.1172/JCI180795 | DOI Listing |
Clin Rev Allergy Immunol
December 2024
Division of Allergy and Clinical Immunology, The Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Room 3B.71, Baltimore, MD, 21224, USA.
Asthma is a chronic airway inflammatory disease that affects millions globally. Although glucocorticoids are a mainstay of asthma treatment, a subset of patients show resistance to these therapies, resulting in poor disease control and increased morbidity. The complex mechanisms underlying steroid-resistant asthma (SRA) involve Th1 and Th17 lymphocyte activity, neutrophil recruitment, and NLRP3 inflammasome activation.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of North Dakota, Grand Forks, ND, USA.
Background: Alzheimer's disease (AD) is an age-related neurodegenerative disorder affecting nearly 50 million individuals worldwide. Besides aging, various comorbidities can increase the risk of AD, such as asthma. However, the molecular mechanism(s) underlying this asthma-associated AD exacerbation is unknown.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Penn Neurodegeneration Genomics Center, Dept of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Background: Recent Alzheimer's disease (AD) genome-wide association studies () have identified >75 risk loci, with >98% of genome-wide significant variants residing in non-coding genomic regions, making it more difficult to infer their functional contexts. In this study, we aim to jointly 1) fine-map causal loci/variants, and 2) identify affected cell types and functional elements by interrogating large-scale collections of thousands of heterogenous, cell type-specific functional genomic (FG) datasets.
Method: We analyzed the full genome-wide summary statistics (n = 21,101,114 variants) from the recent AD GWAS (Bellenguez et al, 2022) (Ncases = 111,326, Ncontrols = 677,663).
Sci Rep
January 2025
Department of Gastroenterology, Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou, China.
The deregulation of immune responses is what causes food allergy (FA) to occur. FA's cause is still unknown. The goal of this study is to investigate the mechanism how the impaired production of IL-10 occurs in peripheral naive B cells of patients with FA.
View Article and Find Full Text PDFYonsei Med J
January 2025
Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea.
Screening tests for specific immunoglobulin E (sIgE) to food allergens, such as the multiple allergen simultaneous test (MAST), are widely used in patients with suspected food allergies in South Korea. We evaluated whether MAST could effectively screen wheat-dependent exercise-induced anaphylaxis (WDEIA) and α-gal syndrome (AGS). We retrospectively reviewed patients with WDEIA and AGS diagnosed with unequivocal history and positive sIgE results for omega-5 gliadin and α-gal using ImmunoCAP, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!