Microfluidic channels fabricated over fabrics or papers have the potential to find substantial application in the next generation of wearable healthcare monitoring systems. The present work focuses on the fabrication procedures that can be used to obtain practically realizable fabric-based microfluidic channels (μFADs) utilizing patterning masks and wax, unlike conventional printing techniques. In this study, comparative analysis was used to differentiate channels obtained using different masking tools for channel patterning as well as different wax materials as hydrophobic barriers. Drawbacks of the conventional tape and candle wax technique were noted and a novel approach was used to create microfluidic channels through a facile and simple masking technique using PVC clear sheets as channel stencils and beeswax as the channel barriers. The resulting fabric based microfluidic channels with varying widths as well as complex microchannel, microwell, and micromixer designs were investigated and a minimum channel width resolution of 500 μm was successfully obtained over cotton based fabrics. Thereafter, the PVC clear sheet-beeswax based microwells were successfully tested to confine various organic and inorganic samples indicating vivid applicability of the technique. Finally, the microwells were used to make a simple and facile colorimetric assay for glucose detection and demonstrated effective detection of glucose levels from 10 mM to 50 mM with significant color variation using potassium iodide as the coloring agent. The above findings clearly suggest the potential of this alternative technique for making low-cost and practically realizable fabric based diagnostic devices (μFADs) in contrast to the other approaches that are currently in use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4ay00389f | DOI Listing |
J Mater Chem B
January 2025
State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
Bone defects are a prevalent issue resulting from various factors, such as trauma, degenerative diseases, congenital disabilities, and the surgical removal of tumors. Current methods for bone regeneration have limitations. In this context, the fusion of tissue engineering and microfluidics has emerged as a promising strategy in the field of bone regeneration.
View Article and Find Full Text PDFNanoscale
January 2025
National Engineering Research Center for Colloidal Materials, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
The controllable synthesis of monodisperse mesoporous silica microspheres with unique physicochemical properties is becoming increasingly important for a variety of applications such as catalysts, chromatography, drug delivery and sensors. Here, we report a facile microfluidic-assisted sol-gel method for the preparation of silica microspheres with precisely controlled properties such as the size of the microspheres, the surface morphology, porosity and stiffness. All these properties can be manipulated by changing specific synthesis parameters, such as changing the microfluidic channels to tune the size of the microdroplets (tens to hundreds of microns), changing the contents of the precursor solution to manipulate the surface morphology (wrinkled to smooth surface) and changing the gelation/annealing conditions to tune the porosity (surface area up to 1021 m g) and stiffness of the microspheres (elastic modulus tunable from 0.
View Article and Find Full Text PDFLab Chip
January 2025
Department of Biotechnology and Bioengineering, Izmir Institute of Technology, Izmir 35430, Turkiye.
Centrifugation is crucial for size and density-based sample separation, but low-volume or delicate samples suffer from loss and impurity issues during repeated spins. We introduce the "Spinochip", a novel microfluidic system utilizing centrifugal forces for efficient filling of dead-end microfluidic channels. The Spinochip enables versatile fluid manipulation with a single reservoir for both inlet and outlet functions.
View Article and Find Full Text PDFHeliyon
January 2025
Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 46117, Liberec, Czech Republic.
Droplet coalescence in microchannels is a complex phenomenon influenced by various parameters such as droplet size, velocity, liquid surface tension, and droplet-droplet spacing. In this study, we thoroughly investigate the impact of these control parameters on droplet coalescence dynamics within a sudden expansion microchannel using two distinct numerical methods. Initially, we employ the boundary element method to solve the Brinkman integral equation, providing detailed insights into the underlying physics of droplet coalescence.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Mechanical and Robotics Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
Electrochemical impedance spectroscopy has great potential for laboratory blood tests. The overall aim of this study is to develop a microfluidic sensor for determining the physical properties and hematological parameters of blood based on its dielectric spectra. Impedance was measured in flowing blood to prevent aggregation and sedimentation at frequencies between 40 Hz and 110 MHz.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!