Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: We aimed to examine the feasibility of applying natural language processing (NLP) to unstructured electronic health record (EHR) documents to detect the presence of financial insecurity among patients with rheumatologic disease enrolled in an integrated care management program (iCMP).
Methods: We incorporated supervised, rule-based NLP and statistical methods to identify financial insecurity among patients with rheumatic conditions enrolled in an iCMP (n = 20,395) in a multihospital EHR system. We constructed a lexicon for financial insecurity using data from available knowledge sources and then reviewed EHR notes from 538 randomly selected individuals (training cohort n = 366, validation cohort n = 172). We manually categorized records as having "definite," "possible," or "no" mention of financial insecurity. All available notes were processed using Narrative Information Linear Extraction, a rule-based version of NLP. Models were trained using the NLP features for financial insecurity using logistic, least absolute shrinkage operator (LASSO), and random forest performance characteristic and were compared with the reference standard.
Results: A total of 245,142 notes were processed from 538 individual patient records. Financial insecurity was present among 100 (27%) individuals in the training cohort and 63 (37%) in the validation cohort. The LASSO and random forest models performed identically and slightly better than logistic regression, with positive predictive values of 0.90, sensitivities of 0.29, and specificities of 0.98.
Conclusion: The development of a context-driven lexicon used with rule-based NLP to extract data that identify financial insecurity is feasible for use and improved the capture for presence of financial insecurity with high accuracy. In the absence of a standard lexicon and construct definition for financial insecurity status, additional studies are needed to optimize the sensitivity of algorithms to categorize financial insecurity with construct validity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319925 | PMC |
http://dx.doi.org/10.1002/acr2.11675 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!