Tick-borne flaviviruses and spp. are globally spread pathogens of zoonotic potential that are maintained by a transmission cycle at the interface between ticks and vertebrate hosts, mainly wild animals. Aside data on pathogen burden in ticks, information on the status of various hosts relative to infection is important to acquire. We reviewed how those infections have been studied in wildlife host species in the field to discuss how collected data provided relevant epidemiological information and to identify needs for further studies. The literature was screened for observational studies on pathogen or antibody detection for tick-borne spp. and flaviviruses in wildlife host animals. Overall, spp. were more studied (73% of case studies, representing 297 host species) than flaviviruses (27% of case studies, representing 114 host species). Studies on both spp. and flaviviruses focused mainly on the same species, namely bank vole and yellow-necked mouse. Most studies were order-specific and cross-sectional, reporting prevalence at various locations, but with little insight into the underlying epidemiological dynamics. Host species with potential to act as reservoir hosts of these pathogens were neglected, notably birds. We highlight the necessity of collecting both demographics and infection data in wildlife studies, and to consider communities of species, to better estimate zoonotic risk potential in the One Health context.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091708 | PMC |
http://dx.doi.org/10.1016/j.onehlt.2024.100747 | DOI Listing |
J Med Entomol
January 2025
Department of Zoology, The University of Burdwan, West Bengal, India.
Host-seeking behavior of Culicoides species was examined from 2018 to 2019 in West Bengal, India, which elucidated diel activity, feeding success, attack rate, biting rate, and preferential landing of adult Culicoides on the cattle. A comparative assessment was done between the light trap and the aspirator. The host-seeking experiment involved a substantial timeframe of 297 h of catch collections over 27 nights.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Microbiology, UT Southwestern Medical Center, Dallas, TX, United States of America.
Unraveling the metabolism of Treponema pallidum is a key component to understanding the pathogenesis of the human disease that it causes, syphilis. For decades, it was assumed that glucose was the sole carbon/energy source for this parasitic spirochete. But the lack of citric-acid-cycle enzymes suggested that alternative sources could be utilized, especially in microaerophilic host environments where glycolysis should not be robust.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy.
Nematodes are abundant and ubiquitous animals which are poorly known at intraspecific level. This work represents the first attempt to fill the gap on basic knowledge of genetic variability and differentiation in Protostrongylus oryctolagi, a nematode parasite of lagomorphs. 68 cox1 sequences were obtained from brown hares collected in five locations in Northern and Central Italy, highlighting the presence of a high amount of genetic variation inside this species.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.
Proteomics has become a powerful approach for the identification and characterization of type III effectors (T3Es). Members of the species complex (RSSC) deploy T3Es to manipulate host cells and to promote root infection of, among others, a wide range of solanaceous plants such as tomato, potato, and tobacco. Here, we used TurboID-mediated proximity labeling (PL) in tomato hairy root cultures to explore the proxeomes of the core RSSC T3Es RipU, RipD, and RipB.
View Article and Find Full Text PDFBiochem Cell Biol
January 2025
Department of Microbiology, Immunology, and Infectious Diseases, Snyder Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
Surface receptors in Gram-negative bacteria that bind and extract iron from the host glycoproteins transferrin (Tf) or lactoferrin (Lf) was discovered 35 years ago in pathogenic species and subsequently was discovered in other pathogens of humans and food production animals. These bacterial species reside exclusively on the mucosal surfaces of the respiratory or genitourinary tract of their mammalian host and rely on their host specific Tf and Lf receptors to acquire iron for survival. Since the specificity of the bacterial Tf receptors was shown to be due to selective pressures on the host Tf, their presence in bacteria that reside in both mammals and birds indicates that they arose over 320 million years ago.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!