The regulatory mechanisms underlying the response to pro-inflammatory cytokines in cardiac diseases are poorly understood. Here, we use iPSC-derived cardiovascular progenitor cells (CVPCs) to model the response to interferon gamma (IFNγ) in human cardiac tissue. We generate RNA-seq and ATAC-seq for four CVPCs that were treated with IFNγ and compare them with paired untreated controls. Transcriptional differences after treatment show that IFNγ initiates an innate immune cell-like response, shifts the CVPC transcriptome towards coronary artery and aorta profiles, and stimulates expression of endothelial cell-specific genes. Analysis of the accessible chromatin shows that IFNγ is a potent chromatin remodeler and establishes an IRF-STAT immune-cell like regulatory network. Finally, we show that 11 GWAS risk variants for 8 common cardiac diseases overlap IFNγ-upregulated ATAC-seq peaks. Our findings reveal insights into IFNγ-induced activation of an immune-like regulatory network in the cardiac vascular endothelium and the potential role that regulatory elements in this pathway play in common cardiac diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11092750 | PMC |
http://dx.doi.org/10.1101/2024.05.03.592380 | DOI Listing |
JAMA
January 2025
Assistant Secretary for Technology Policy/Office of the National Coordinator for Health IT, Washington, DC.
Importance: Health information technology, such as electronic health records (EHRs), has been widely adopted, yet accessing and exchanging data in the fragmented US health care system remains challenging. To unlock the potential of EHR data to improve patient health, public health, and health care, it is essential to streamline the exchange of health data. As leaders across the US Department of Health and Human Services (DHHS), we describe how DHHS has implemented fundamental building blocks to achieve this vision.
View Article and Find Full Text PDFBiochem Genet
January 2025
Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases.
View Article and Find Full Text PDFHum Genomics
January 2025
Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Richards Building B304, 3700 Hamilton Walk, Philadelphia, PA, 19104, USA.
Background: Disease comorbidities and longer-term complications, arising from biologically related associations across phenotypes, can lead to increased risk of severe health outcomes. Given that many diseases exhibit sex-specific differences in their genetics, our objective was to determine whether genotype-by-sex (GxS) interactions similarly influence cross-phenotype associations. Through comparison of sex-stratified disease-disease networks (DDNs)-where nodes represent diseases and edges represent their relationships-we investigate sex differences in patterns of polygenicity and pleiotropy between diseases.
View Article and Find Full Text PDFGenome Biol
January 2025
Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
Background: Genetic studies have associated thousands of enhancers with breast cancer (BC). However, the vast majority have not been functionally characterized. Thus, it remains unclear how BC-associated enhancers contribute to cancer.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Endocrinology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, Shandong, China.
Obesity (OB) and atherosclerosis (AS) represent two highly prevalent and detrimental chronic diseases that are intricately linked. However, the shared genetic signatures and molecular pathways underlying these two conditions remain elusive. This study aimed to identify the shared diagnostic genes and the associated molecular mechanism between OB and AS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!