Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unlabelled: Many stressors, including viral infection, induce a widespread suppression of cellular RNA polymerase II (RNAPII) transcription, yet the mechanisms underlying transcriptional repression are not well understood. Here we find that a crucial component of the RNA polymerase II holoenzyme, general transcription factor IIB (TFIIB), is targeted for post-translational turnover by two pathways, each of which contribute to its depletion during stress. Upon DNA damage, translational stress, apoptosis, or replication of the oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV), TFIIB is cleaved by activated caspase-3, leading to preferential downregulation of pro-survival genes. TFIIB is further targeted for rapid proteasome-mediated turnover by the E3 ubiquitin ligase TRIM28. KSHV counteracts proteasome-mediated turnover of TFIIB, thereby preserving a sufficient pool of TFIIB for transcription of viral genes. Thus, TFIIB may be a lynchpin for transcriptional outcomes during stress and a key target for nuclear replicating DNA viruses that rely on host transcriptional machinery.
Significance Statement: Transcription by RNA polymerase II (RNAPII) synthesizes all cellular protein-coding mRNA. Many cellular stressors and viral infections dampen RNAPII activity, though the processes underlying this are not fully understood. Here we describe a two-pronged degradation strategy by which cells respond to stress by depleting the abundance of the key RNAPII general transcription factor, TFIIB. We further demonstrate that an oncogenic human gammaherpesvirus antagonizes this process, retaining enough TFIIB to support its own robust viral transcription. Thus, modulation of RNAPII machinery plays a crucial role in dictating the outcome of cellular perturbation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11092454 | PMC |
http://dx.doi.org/10.1101/2024.01.16.575933 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!