Reactive inhibitory control is crucial for survival. Traditionally, this control in mammals was attributed solely to the hyperdirect pathway, with cortical control signals flowing unidirectionally from the subthalamic nucleus (STN) to basal ganglia output regions. Yet recent findings have put this model into question, suggesting that the STN is assisted in stopping actions through ascending control signals to the striatum mediated by the external globus pallidus (GPe). Here we investigate this suggestion by harnessing a biologically-constrained spiking model of the corticobasal ganglia-thalamic (CBGT) circuit that includes pallidostriatal pathways originating from arkypallidal neurons. Through a series of experiments probing the interaction between three critical inhibitory nodes (the STN, arkypallidal cells, and indirect path-way spiny projection neurons), we find that the GPe acts as a critical mediator of both ascending and descending inhibitory signals in the CBGT circuit. In particular, pallidostriatal pathways regulate this process by weakening the direct pathway dominance of the evidence accumulation process driving decisions, which increases the relative suppressive influence of the indirect pathway on basal ganglia output. These findings delineate how pallidostriatal pathways can facilitate action cancellation by managing the bidirectional flow of information within CBGT circuits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11092778PMC
http://dx.doi.org/10.1101/2024.05.03.592321DOI Listing

Publication Analysis

Top Keywords

pallidostriatal pathways
12
arkypallidal neurons
8
external globus
8
globus pallidus
8
inhibitory control
8
control signals
8
basal ganglia
8
ganglia output
8
cbgt circuit
8
control
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!