Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The CRISPR/Cas nucleases system is widely considered the most important tool in genome engineering. However, current methods for predicting on/off-target effects and designing guide RNA (gRNA) rely on purely data-driven approaches or focus solely on the system's thermal equilibrium properties. Nonetheless, experimental evidence suggests that the process is kinetically controlled rather than being in equilibrium. In this study, we utilized a vast amount of available data and combined random forest, a supervised ensemble learning algorithm, and free energy landscape analysis to investigate the kinetic pathways of R-loop formation in the CRISPR/Cas9 system and the intricate molecular interactions between DNA and the Cas9 RuvC and HNH domains. The study revealed (a) a novel three-state kinetic mechanism, (b) the unfolding of the activation state of the R-loop being the most crucial kinetic determinant and the key predictor for on- and off-target cleavage efficiencies, and (c) the nucleotides from positions +13 to +16 being the kinetically critical nucleotides. The results provide a biophysical rationale for the design of a kinetic strategy for enhancing CRISPR/Cas9 gene editing accuracy and efficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11092603 | PMC |
http://dx.doi.org/10.1101/2024.04.30.591525 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!