Background: The relationship between early perihematomal edema (PHE) and hematoma expansion (HE) is unclear. We investigated this relationship in patients with acute spontaneous intracerebral hemorrhage (ICH), using radiomics.
Methods: In this multicenter retrospective study, we analyzed 490 patients with spontaneous ICH who underwent non-contrast computed tomography within 6 h of symptom onset, with follow-up imaging at 24 h. We performed HE and PHE image segmentation, and feature extraction and selection to identify HE-associated optimal radiomics features. We calculated radiomics scores of hematoma (Radscores_HEA) and PHE (Radscores_PHE) and constructed a combined model (Radscore_HEA_PHE). Relationships of the PHE radiomics features or Radscores_PHE with clinical variables, hematoma imaging signs, Radscores_HEA, and HE were assessed by univariate, correlation, and multivariate analyses. We compared predictive performances in the training ( = 296) and validation ( = 194) cohorts.
Results: Shape_VoxelVolume and Shape_MinorAxisLength of PHE were identified as optimal radiomics features associated with HE. Radscore_PHE (odds ratio = 1.039, = 0.032) was an independent HE risk factor after adjusting for the ICH onset time, Glasgow Coma Scale score, baseline hematoma volume, hematoma shape, hematoma density, midline shift, and Radscore_HEA. The areas under the receiver operating characteristic curve of Radscore_PHE in the training and validation cohorts were 0.808 and 0.739, respectively. After incorporating Radscore_PHE, the integrated discrimination improvements of Radscore_HEA_PHE in the training and validation cohorts were 0.009 ( = 0.086) and -0.011 ( < 0.001), respectively.
Conclusion: Radscore_PHE, based on Shape_VoxelVolume and Shape_MinorAxisLength of PHE, independently predicts HE, while Radscore_PHE did not add significant incremental value to Radscore_HEA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091303 | PMC |
http://dx.doi.org/10.3389/fnins.2024.1394795 | DOI Listing |
Cardiovasc Diagn Ther
December 2024
The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China.
Background And Objective: Radiomics is an emerging technology that facilitates the quantitative analysis of multi-modal cardiac magnetic resonance imaging (MRI). This study aims to introduce a standardized workflow for applying radiomics to non-ischemic cardiomyopathies, enabling clinicians to comprehensively understand and implement this technology in clinical practice.
Methods: A computerized literature search (up to August 1, 2024) was conducted using PubMed to identify relevant studies on the roles and workflows of radiomics in non-ischemic cardiomyopathy.
BMC Cancer
January 2025
Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, Henan, China.
Objectives: To construct a prediction model based on deep learning (DL) and radiomics features of diffusion weighted imaging (DWI), and clinical variables for evaluating TP53 mutations in endometrial cancer (EC).
Methods: DWI and clinical data from 155 EC patients were included in this study, consisting of 80 in the training set, 35 in the test set, and 40 in the external validation set. Radiomics features, convolutional neural network-based DL features, and clinical variables were analyzed.
BMC Cancer
January 2025
Department of Radiology, Xiangtan Central Hospital, Xiangtan, 411000, P. R. China.
Background: This study aims to quantify intratumoral heterogeneity (ITH) using preoperative CT image and evaluate its ability to predict pathological high-grade patterns, specifically micropapillary and/or solid components (MP/S), in patients diagnosed with clinical stage I solid lung adenocarcinoma (LADC).
Methods: In this retrospective study, we enrolled 457 patients who were postoperatively diagnosed with clinical stage I solid LADC from two medical centers, assigning them to either a training set (n = 304) or a test set (n = 153). Sub-regions within the tumor were identified using the K-means method.
Sci Rep
January 2025
Department of Computer Engineering, Inha University, Incheon, Republic of Korea.
The most prevalent form of malignant tumors that originate in the brain are known as gliomas. In order to diagnose, treat, and identify risk factors, it is crucial to have precise and resilient segmentation of the tumors, along with an estimation of the patients' overall survival rate. Therefore, we have introduced a deep learning approach that employs a combination of MRI scans to accurately segment brain tumors and predict survival in patients with gliomas.
View Article and Find Full Text PDFAcad Radiol
January 2025
Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Y.X., B.X., Z.W., C.P., M.X.). Electronic address:
Rationale And Objectives: To develop and externally validate interpretable CT radiomics-based machine learning (ML) models for preoperative Ki-67 expression prediction in clear cell renal cell carcinoma (ccRCC).
Methods: 506 patients were retrospectively enrolled from three independent institutes and divided into the training (n=357) and external test (n=149) sets. Ki67 expression was determined by immunohistochemistry (IHC) and categorized into low (<15%) and high (≥15%) expression groups.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!