Study Design: This study is an ambispective evaluation and analysis of a single-center cohort.
Objective: This study aimed to evaluate the performance of a novel biphasic calcium phosphate (BCP) bone graft with submicron-sized needle-shaped surface topography (BCP<µm) in interbody arthrodesis of the lumbar spine.
Methods: This study was a single-center ambispective assessment of adult patients receiving BCP<µm as part of their lumbar interbody fusion surgery. The primary outcome was a fusion status on computed tomography (CT) 12 months postoperative. The secondary outcomes included postoperative changes in the visual analog scale (VAS), Oswestry Disability Index (ODI), Short Form 12 (SF-12), and length of stay (LOS).
Results: Sixty-three patients with one- to three-level anterior (48, 76%) and lateral (15, 24%) interbody fusions with posterior instrumentation were analyzed. Thirty-one participants (49%) had three or more comorbidities, including heart disease (43 participants, 68%), obesity (31 participants, 49%), and previous lumbar surgery (23 participants, 37%). The mean ODI decreased by 24. The mean SF-12 physical health and SF-12 mental health improved by a mean of 11.5 and 6.3, respectively. The mean VAS for the left leg, right leg, and back improved by a mean of 25.75, 22.07, and 37.87, respectively. Of 101 levels, 91 (90%) demonstrated complete bridging trabecular bone fusion with no evidence of supplemental fixation failure.
Conclusion: The data of BCP<µm in interbody fusions for degenerative disease of the lumbar spine provides evidence of fusion in a complicated cohort of patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091845 | PMC |
http://dx.doi.org/10.7759/cureus.58218 | DOI Listing |
3D Print Addit Manuf
October 2024
New Technologies Research Center, Amirkabir University of Technology, Tehran, Iran.
Robocasting calcium phosphate compounds as a novel approach to creating customized structures with interconnected pores not only overcomes the limitations of traditional fabrication methods of calcium phosphate substitutes but also boosts the potential for bone tissue regeneration. The ink development is a key step in 3D printing. In this study, different inks consisting of magnesium- and sodium-doped carbonated hydroxyapatite, β-tricalcium phosphate, and Pluronic F-127 were prepared to design biomimetic bone scaffolds.
View Article and Find Full Text PDFBioact Mater
April 2025
Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
Human long bones exhibit pore size gradients with small pores in the exterior cortical bone and large pores in the interior cancellous bone. However, most current bone tissue engineering (BTE) scaffolds only have homogeneous porous structures that do not resemble the graded architectures of natural bones. Pore-size graded (PSG) scaffolds are attractive for BTE since they can provide biomimicking porous structures that may lead to enhanced bone tissue regeneration.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Department of Periodontics, Dr. R. Ahmed Dental College and Hospital, Kolkata, West Bengal, India.
Chronic osteomyelitis of the maxillofacial bones (i.e., jaw bones) is a persistent infection that requires effective treatment.
View Article and Find Full Text PDFInt J Implant Dent
December 2024
Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
Purpose: Currently, maxillary sinus floor (SF) elevation is based on off-the-shelf allogeneic, xenogeneic or synthetic bone augmentation materials (BAM) that are implanted via an open lateral sinus wall approach (OSFE). However, this invasive method is associated with postoperative complications caused by an inadequate blood supply of the alveolar ridge. Balloon-assisted procedures are minimal invasive alternatives with lower complication rates.
View Article and Find Full Text PDFHeliyon
November 2024
Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia.
Calcium phosphate (CaP) biomaterials have been widely used in hard tissue engineering, but their impact on cell metabolism is unclear. We synthesized and characterized hydroxyapatite, β-tricalcium phosphate, and biphasic calcium phosphate composites to investigate material effects on NIH/3T3 cell metabolism. The intracellular metabolites were analyzed employing LC-MS metabolomics, and cell metabolic status was assessed comparatively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!