Ionic liquids (ILs) are an emerging materials' class with applications in areas such as energy storage, catalysis, and biomass dissolution and processing. Their physicochemical properties including surface tension, viscosity, density and their interplay between cation and anion chemistry are decisive in these applications. For many commercially available ILs, a full set of physicochemical data is not available. Here, we extend the knowledge base by providing physicochemical properties such as density (20 and 25 °C), refractive index (20 and 25 °C), surface tension (23 °C, including polar and dispersive components), and shear viscosity (ambient atmosphere, shear rate 1-200 s), for 20 commercial ILs. A correlation between the crystal volume, dispersive surface tension, and shear viscosity is introduced as a predictive tool, allowing for viscosity estimation. Systematic exploration of cation/anion alkyl side chain lengths reveals the impact on the IL's physicochemical attributes. Increasing the anion's headgroup decreases surface tension up to 35.7% and consequently shear viscosity. We further demonstrate that the dispersive part of the surface tension linearly correlates with the refractive index of the ionic liquid. While we provide additional physicochemical data, the screening and modeling efforts will contribute to better structure property predictions enabling faster progress in design and applications of ILs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11090035 | PMC |
http://dx.doi.org/10.1021/acs.jced.3c00687 | DOI Listing |
Front Biosci (Elite Ed)
November 2024
Advanced Institute of Technology and Innovation (IATI), 50751-310 Recife, Pernambuco, Brazil.
Background: This study aimed to produce, characterize, and apply a biosurfactant as a bioremediation tool for oil-contaminated coastal environments.
Methods: The biosurfactant was produced in a medium containing 5.0% corn steep liquor and 1.
Front Biosci (Elite Ed)
October 2024
Department of Environmental Biotechnology, Biotechnology Research Center, Al-Nahrain University, 10018 Baghdad, Iraq.
Background: Contamination with crude oil and hydrocarbons has become a global threat. Such threats have urged us to invent solutions to deal with this dilemma. However, chemical treatment comes with limited benefits.
View Article and Find Full Text PDFSci Rep
December 2024
Faculté des Sciences et Technologies, LEMTA - Université de Lorraine - CNRS UMR 7563, Boîte Postale 70239, Vandoeuvre les Nancy cedex, 54506, France.
The wetting characteristics of fluids play a crucial role in various fields of interface and surface science. Contact angle serves as a fundamental indicator of wetting behavior. However, accurate quantification of wetting phenomena even at the macroscale often poses challenges, particularly due to the hysteresis between receding and advancing contact angles.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Cooperative Innovation Center of Industrial Fermentation, Ministry of education & Hubei province, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China. Electronic address:
Tannic acid (TA) has attracted the attention of researchers as a promising organic ligand capable of forming metal-organic coordination networks with various metal ions at interfaces to impact surface properties. In this study, we innovatively reported a self-assembly method for surface decoration by depositing TA/Fe coatings on the surface of desalted duck egg white nanoparticles (DEWN), further studying the oil/water interfacial properties of the modified particles. The results showed that the ratio and concentration of TA to Fe could modulate interfacial properties.
View Article and Find Full Text PDFJ Food Sci
December 2024
Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA.
The demand for nondairy and plant-based products has increased, but there is still a need for more information about and improvement in these products, especially when it comes to frozen desserts. Similar to ice cream, which simultaneously is an emulsion, dispersion, and foam, nondairy frozen desserts also have a complex structure. As a starting point, 15 commercial nondairy frozen desserts, marketed as offering an ice cream-like experience, were purchased and evaluated for compositional, physical, structural, rheological, and meltdown properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!