Lack of nitrogen limits food production in poor countries while excessive nitrogen use in industrial countries has led to transgression of the planetary boundary. However, the potential of spatial redistribution of nitrogen input for food security when returning to the safe boundary has not been quantified in a robust manner. Using an emulator of a global gridded crop model ensemble, we found that redistribution of current nitrogen input to major cereals among countries can double production in the most food-insecure countries, while increasing global production of these crops by 12% with no notable regional loss or reducing the nitrogen input to the current production by one-third. Redistribution of the input within the boundary increased production by 6-8% compared to the current relative distribution, increasing production in the food-insecure countries by two-thirds. Our findings provide georeferenced guidelines for redistributing nitrogen use to enhance food security while safeguarding the planet.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11093128 | PMC |
http://dx.doi.org/10.1093/pnasnexus/pgae170 | DOI Listing |
Front Plant Sci
December 2024
Research Centre for Vegetables and Ornamental Crops, Council for Agricultural Research and Economics (CREA), Pescia (PT), Italy.
Introduction: The non-thermal plasma (NTP) technique has been suggested as a sustainable horticultural practice to promote biomass accumulation, nutrient uptake, N metabolism, and disease prevention in plants. In particular, the potentiality of this technique to promote the natural accumulation of nutrients into plants deserve to be explored as input saving is strongly recommended in the horticultural sector.
Methods: The nutrient solution supplied to a red coloured variety of rocket salad [ (L.
BMC Plant Biol
January 2025
Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA.
Foxtail millet (Setaria italica L.) is nutritionally superior to other cereals of the family Poaceae, with the potential to perform better in marginal environments. In the present context of climate change, ecologically sound and low-input foxtail millet varieties can be chosen for agricultural sustainability.
View Article and Find Full Text PDFSci Rep
January 2025
Young Researchers and Elite Club, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran.
Accurate estimation of interfacial tension (IFT) between nitrogen and crude oil during nitrogen-based gas injection into oil reservoirs is imperative. The previous research works dealing with prediction of IFT of oil and nitrogen systems consider synthetic oil samples such n-alkanes. In this work, we aim to utilize eight machine learning methods of Decision Tree (DT), AdaBoost (AB), Random Forest (RF), K-nearest Neighbors (KNN), Ensemble Learning (EL), Support Vector Machine (SVM), Convolutional Neural Network (CNN) and Multilayer Perceptron Artificial Neural Network (MLP-ANN) to construct data-driven intelligent models to predict crude oil - nitrogen IFT based upon experimental data of real crude oils samples encountered in underground oil reservoirs.
View Article and Find Full Text PDFJ Am Water Resour Assoc
March 2024
University of Maryland Center for Environmental Science, Annapolis, Maryland, USA.
Ammonia oxidation plays a vital role in regulating soil nitrogen (N) cycle in agricultural soil, which is significantly influenced by different fertilizer regimes. However, there is still need to further investigate the effects of different fertilizer managements on rhizosphere soil ammonia-oxidizing archaea (AOA) and bacteria (AOB) community in the double-cropping rice field. Therefore, the effects of different long-term (37 years) fertilizer managements on rhizosphere soil potential nitrification activity (PNA), AOA and AOB community structure, and its relationship under the double-cropping rice system in southern of China were studied in the present paper.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!