3D Printed MXene-Based Wire Strain Sensors with Enhanced Sensitivity and Anisotropy.

Small

Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China.

Published: September 2024

Stretchable strain sensors play a crucial role in intelligent wearable systems, serving as the interface between humans and environment by translating mechanical strains into electrical signals. Traditional fiber strain sensors with intrinsic uniform axial strain distribution face challenges in achieving high sensitivity and anisotropy. Moreover, existing micro/nano-structure designs often compromise stretchability and durability. To address these challenges, a novel approach of using 3D printing to fabricate MXene-based flexible sensors with tunable micro and macrostructures.  Poly(tetrafluoroethylene) (PTFE) as a pore-inducing agent is added into 3D printable inks to achieve controllable microstructural modifications. In addition to microstructure tuning, 3D printing is employed for macrostructural design modifications, guided by finite element modeling (FEM) simulations. As a result, the 3D printed sensors exhibit heightened sensitivity and anisotropy, making them suitable for tracking static and dynamic displacement changes. The proposed approach presents an efficient and economically viable solution for standardized large-scale production of advanced wire strain sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202401565DOI Listing

Publication Analysis

Top Keywords

strain sensors
16
sensitivity anisotropy
12
wire strain
8
sensors
6
strain
5
printed mxene-based
4
mxene-based wire
4
sensors enhanced
4
enhanced sensitivity
4
anisotropy stretchable
4

Similar Publications

Facile Design of Highly Stretchable and Conductive Crumpled Graphene/NiS Films for Multifunctional Applications.

Small Methods

January 2025

Fujian Provincial Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering, Minjiang University, Fuzhou, 350108, P. R. China.

The cost-effective and scalable synthesis and patterning of soft nanomaterial composites with improved electrical conductivity and mechanical stretchability remains challenging in wearable devices. This work reports a scalable, low-cost fabrication approach to directly create and pattern crumpled porous graphene/NiS nanocomposites with high mechanical stretchability and electrical conductivity through laser irradiation combined with electrodeposition and a pre-strain strategy. With modulated mechanical stretchability and electrical conductivity, the crumpled graphene/NiS nanocomposite can be readily patterned into target geometries for application in a standalone stretchable sensing platform.

View Article and Find Full Text PDF

Skin-Inspired and Self-Powered Piezoionic Sensors for Smart Wearable Applications.

Small

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China.

Bio-inspired by tactile function of human skin, piezoionic skin sensors recognize strain and stress through converting mechanical stimulus into electrical signals based on ion transfer. However, ion transfer inside sensors is significantly restricted by the lack of hierarchical structure of electrode materials, and then impedes practical application. Here, a durable nanocomposite electrode is developed based on carbon nanotubes and graphene, and integrated into piezoionic sensors for smart wearable applications, such as facial expression and exercise posture recognitions.

View Article and Find Full Text PDF

Intrinsic Anti-Freezing, Tough, and Transparent Hydrogels for Smart Optical and Multi-Modal Sensing Applications.

Adv Mater

January 2025

Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China.

Hydrogels have received great attention due to their molecular designability and wide application range. However, they are prone to freeze at low temperatures due to the existence of mass water molecules, which can damage their flexibility and transparency, greatly limiting their use in cold environments. Although adding cryoprotectants can reduce the freezing point of hydrogels, it may also deteriorate the mechanical properties and face the risk of cryoprotectant leakage.

View Article and Find Full Text PDF

Adhesive conductive wood-based hydrogel with high tensile strength as a flexible sensor.

Carbohydr Polym

March 2025

State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China.

Conductive hydrogels have promising applications for flexible strain sensors. However, most hydrogels have poor tensile strength and are susceptible to damage, significantly impeding their potential for further application. Wood has been used to reinforce hydrogels, significantly enhancing their strength and dimensional stability.

View Article and Find Full Text PDF

A highly stretchable, self-healing, self-adhesive polyacrylic acid/chitosan multifunctional composite hydrogel for flexible strain sensors.

Carbohydr Polym

March 2025

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road East, Chaoyang District, Beijing 100029, China. Electronic address:

Conductive hydrogels have emerged as excellent candidates for the design and construction of flexible wearable sensors and have attracted great attention in the field of wearable sensors. However, there are still serious challenges to integrating high stretchability, self-healing, self-adhesion, excellent sensing properties, and good biocompatibility into hydrogel wearable devices through easy and green strategies. In this paper, multifunctional conductive hydrogels (PCGB) with good biocompatibility, high tensile (1694 % strain), self-adhesive, and self-healing properties were fabricated by incorporating boric acid (BA) and glucose (Glu) simultaneously into polyacrylic acid (PAA) and chitosan (CS) polymer networks using a simple one-pot polymerization method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!