The study and development of high thermoelectric properties is crucial for the next generation of microelectronic and wearable electronics. Derived from the recent experimental realization of layers of transition metal molybdenum and boride, we report the theoretical realization of advanced thermoelectric properties in two-dimensional (2D) transition metal boride MoB ( = 0, 0.05, 0.10, 0.125, 0.15)-based defect sheets. The introduction of metal vacancies results in stronger d-p exchange interactions and hybridization between the Mo-d and B-p atoms. Meanwhile, the ordered metal vacancies enabled transition metal borides (n-type MoB) to widen the d-bandwidth and raise the d-band center, leading to a relatively high carrier mobility of 3262 cm V s and conductivity twice that of a bug-free n-type MoB layer, which indicates that it presents good electronic and thermal transport properties. Furthermore, investigations of the thermoelectric performance exhibit a maximum of up to 3.29, which is superior to those of currently reported 2D materials. Modulation by defect engineering suggests that 2D transition metal boride sheets with ordered metal vacancies have promising applications in microelectronics, wearable electronics and thermoelectric devices.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp00319eDOI Listing

Publication Analysis

Top Keywords

metal vacancies
16
transition metal
16
ordered metal
12
metal
8
advanced thermoelectric
8
thermoelectric properties
8
wearable electronics
8
metal boride
8
n-type mob
8
thermoelectric
5

Similar Publications

Downscaling of Non-Van der Waals Semimetallic WN with Resistivity Preservation.

ACS Nano

January 2025

Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, Massachusetts 02215, United States.

The bulk phase of transition metal nitrides (TMNs) has long been a subject of extensive investigation due to their utility as coating materials, electrocatalysts, and diffusion barriers, attributed to their high conductivity and refractory properties. Downscaling TMNs into two-dimensional (2D) forms would provide valuable members to the existing 2D materials repertoire, with potential enhancements across various applications. Moreover, calculations have anticipated the emergence of uncommon physical phenomena in TMNs at the 2D limit.

View Article and Find Full Text PDF

Heterogeneous catalysts have emerged as a potential key for closing the carbon cycle by converting carbon dioxide (CO) into value-added chemicals. In this work, we report a highly active and stable ceria (CeO)-based electronically tuned trimetallic catalyst for CO to CO conversion. A unique distribution of electron density between the defective ceria support and the trimetallic nanoparticles (of Ni, Cu, Zn) was established by creating the strong metal support interaction (SMSI) between them.

View Article and Find Full Text PDF

Nickel hydroxide (Ni(OH)) is considered to be one of the most promising electrocatalysts for urea oxidation reaction (UOR) under alkaline conditions due to its flexible structure, wide composition and abundant 3D electrons. However, its slow electrochemical reaction rate, high affinity for the reaction intermediate *COOH, easy exposure to low exponential crystal faces and limited metal active sites that seriously hinder the further improvement of UOR activities. Herein it is reported electrocatalyst composed of rich oxygen-vacancy (O) defects with amorphous SeO-covered Ni(OH) (O-SeO/Ni(OH)).

View Article and Find Full Text PDF

Quadruple perovskite oxides have received extensive attention in electronics and catalysis, owing to their cation-ordering structure and intriguing physical properties. However, their repertoires still remain limited. In particular, piezoelectricity from quadruple perovskites has been rarely reported due to the frustrated symmetry-breaking transition in A-site-ordered perovskite structures, disabling their piezoelectric applications.

View Article and Find Full Text PDF

Modern-day applications demand onboard electricity generation that can be achieved using piezoelectric phenomena. Reducing the dimensionality of materials is a pathway to enhancing the piezoelectric properties. Transition-metal dichalcogenides have been shown to exhibit high piezoelectricity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!